【題目】如圖,已知ABCD的面積為100,P為邊CD上的任一點(diǎn),E,F分別為線段APBP的中點(diǎn),則圖中陰影部分的總面積為(

A. 30B. 25C. 22.5D. 20

【答案】B

【解析】

先由ABPABCD同底等高,得出,再由中線的性質(zhì)得到,從而得到圖中陰影部分的總面積.

∵平行四邊形ABCD

SABP=S平行四邊形ABCD ,

SADP+SCBP+SABP=S平行四邊形ABCD ,

SADP+SCBP=S平行四邊形ABCD

EF分別為線段APBP的中點(diǎn),

SADE=SADP , SCBF=SCBP

SADE+SCBF=SADP+SCBP=S平行四邊形ABCD=×100=25

故答案為:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用雙十字相乘法分解因式

例:20x2+9xy-18y2-18x+33y-14。

4×6+5×(-3)=9,4×(-7)+5×2=-13-3×(-7)+2×6=33,

20x2+9xy-18y2-18x+33y-14=(4x-3y+2)(5x+6y-7)。

雙十字相乘法的理論根據(jù)是多項(xiàng)式的乘法,在使用雙十字相乘法時(shí),應(yīng)注意它帶有試驗(yàn)性質(zhì),很可能需要經(jīng)過多次試驗(yàn)才能得到正確答案。

分解因式6x2-5xy-6y2-2xz-23yz-20z2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年水果大豐收,A,B兩個(gè)水果基地分別收獲水果380件、320件,現(xiàn)需把這些水果全部運(yùn)往甲、乙兩銷售點(diǎn),從A基地運(yùn)往甲、乙兩銷售點(diǎn)的費(fèi)用分別為每件40元和20元,從B基地運(yùn)往甲、乙兩銷售點(diǎn)的費(fèi)用分別為每件15元和30元,現(xiàn)甲銷售點(diǎn)需要水果400件,乙銷售點(diǎn)需要水果300件.

(1)設(shè)從A基地運(yùn)往甲銷售點(diǎn)水果x件,總運(yùn)費(fèi)為W元,請用含x的代數(shù)式表示W,并寫出x的取值范圍;

(2)若總運(yùn)費(fèi)不超過18300元,且A地運(yùn)往甲銷售點(diǎn)的水果不低于200件,試確定運(yùn)費(fèi)最低的運(yùn)輸方案,并求出最低運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具.如圖,在正方形紙板ABCD中,BD為對角線,E、F分別為BCCD的中點(diǎn),APEF分別交BD、EFO、P兩點(diǎn),M、N分別為BODO的中點(diǎn),連接MPNF,沿圖中實(shí)線剪開即可得到一副七巧板.若AB1,則四邊形BMPE的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是長方形紙片的四個(gè)頂點(diǎn),點(diǎn)分別是邊上的三點(diǎn),連結(jié)

1)將長方形紙片按圖①所示的方式折疊,為折痕,點(diǎn)折疊后的對應(yīng)點(diǎn)分別為,點(diǎn)上,則的度數(shù)為

2)將長方形紙片按圖②所示的方式折疊,為折痕,點(diǎn)折疊后的對應(yīng)點(diǎn)分別為, , 的度數(shù);

3)將長方形紙片按圖③所示的方式折疊,為折痕,點(diǎn)折疊后的對應(yīng)點(diǎn)分別為,若,求的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網(wǎng)箱人數(shù)/

清理捕魚網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;

(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

如圖,二次函數(shù)y=﹣x2+x+4的圖象與x軸交于點(diǎn)B,點(diǎn)C(點(diǎn)B在點(diǎn)C的左邊),與y軸交于點(diǎn)A,連接AC,AB.

(1)求證:AO2=BOCO;

(2)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)N作MN∥AC,交AB于點(diǎn)M,求當(dāng)△AMN的面積取得最大值時(shí),直線AN的表達(dá)式.

(3)連接OM,在(2)的結(jié)論下,試判斷OM與AN的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A-3-1),B-4,-3),C-2,-3).

1)畫出將ABC向上平移5個(gè)單位得到的A1B1C1,并寫出點(diǎn)B1的坐標(biāo);

2)畫出ABC關(guān)于點(diǎn)O成中心對稱的圖形A2B2C2,并寫出點(diǎn)B2的坐標(biāo);

3)觀察圖形,A1B1C1A2B2C2成中心對稱嗎?如果成中心對稱,那么對稱中心的坐標(biāo)為_____;如果不成中心對稱,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的對應(yīng)值如表所示:

3

2

1

0

1

0

3

4

3

0

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)在給定的平面直角坐標(biāo)系中畫出這個(gè)二次函數(shù)的圖象;

(3)當(dāng)時(shí),直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案