【題目】某校研究性學(xué)習(xí)小組在學(xué)習(xí)二次根式 =|a|之后,研究了如下四個(gè)問題,其中錯(cuò)誤的是( )
A.在a>1的條件下化簡代數(shù)式a+ 的結(jié)果為2a﹣1
B.當(dāng)a+ 的值恒為定值時(shí),字母a的取值范圍是a≤1
C.a+ 的值隨a變化而變化,當(dāng)a取某個(gè)數(shù)值時(shí),上述代數(shù)式的值可以為
D.若 =( )2 , 則字母a必須滿足a≥1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)對(duì)校內(nèi)外安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加15臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購買1臺(tái)甲型設(shè)備比購買1臺(tái)乙型設(shè)備多150元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少400元.
甲型 | 乙型 | |
價(jià)格(元/臺(tái)) | a | b |
有效半徑(米/臺(tái)) | 150 | 100 |
(1)求a、b的值;
(2)若購買該批設(shè)備的資金不超過11000元,且要求監(jiān)控半徑覆蓋范圍不低于1600米,兩種型號(hào)的設(shè)備均要至少買一臺(tái),請(qǐng)你為學(xué)校設(shè)計(jì)購買方案,并計(jì)算最低購買費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn),分別在邊,上,有下列條件:
①;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中點(diǎn)的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),…,按此規(guī)律第100個(gè)圖中共有點(diǎn)的個(gè)數(shù)是
A. 15151B. 15152C. 15153D. 15154
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點(diǎn),連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,CE是∠ACB的平分線,∠A=20°,∠B=60°,求∠BCD和∠ECD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(a,0),C(0,c)且滿足:(a+6)2+=0,長方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).
(1)求點(diǎn)B的坐標(biāo).
(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖2,E為x軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,F是x軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CD交BE的延長線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,
證明:過點(diǎn)C作CF∥AB.
∵AB∥CF(已知),
∴∠B= ( ).
∵AB∥DE,CF∥AB( 已知 ),
∴CF∥DE ( )
∴∠2+ =180° ( )
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180° ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實(shí)數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com