【題目】已知:如圖,直線y=x﹣15與x軸、y軸分別相交于點A和點B.拋物線經(jīng)過A、B兩點.
(1)求這個拋物線的解析式;
(2)若這拋物線的頂點為點D,與x軸的另一個交點為點C.對稱軸與x軸交于點H,求△DAC的面積;
(3)若點E是線段AD的中點.CE與DH交于點G,點P在y軸的正半軸上,△POH是否能夠與△CGH相似?如果能,請求出點P的坐標(biāo);如果不能,請說明理由.
【答案】(1)y=﹣x2+6x﹣15;(2)△DAC的面積為72;(3)△POH能夠與△CHG相似,相似時點P的坐標(biāo)為P1(0,6)或P2(0,).
【解析】
(1)利用一次函數(shù)的解析式,求得A、B的坐標(biāo),再代入拋物線得出方程組,即可求出拋物線的解析式;
(2)分別求出點D、點C的坐標(biāo),根據(jù)三角形的面積公式即可求得答案;
(3)根據(jù)題目的條知點G是△DAC的重心,首先求得的值,再根據(jù)相似三角形的性質(zhì)得出兩個比例式,代入即可求得點P的坐標(biāo).
(1)∵y=x﹣15,
y=0時,0=x﹣15,
∴x=15,
當(dāng)x=0時,y=﹣15,
∴A(15,0),B(0,﹣15),
代入得,
解得,
∴拋物線的解析式:.
(2)拋物線的解析式可變形為,
∴頂點D坐標(biāo)為(9,12),
設(shè)y=0,則,
∴(x﹣9)2=36.
∴x1=3,x2=15,
∴點C的坐標(biāo)為(3,0),
∴.
(3)∵點E是線段AD的中點,點H是線段AC的中點,.
∴點G是△DAC的重心.如圖:
∵頂點D坐標(biāo)為(9,12),
∴,
∴HO=9,CH=6.
設(shè)△POH∽△GHC時,
,
∴
∴PO=6,
∴P1(0,6);
△POH∽△CHG時,,
,
∴.
∴.
∴△POH能夠與△CHG相似,相似時點P的坐標(biāo)為P1(0,6)或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張小卡片上分別寫有數(shù)字-1,1,2,3,它們除數(shù)字外沒有任何區(qū)別,現(xiàn)將它們放在盒子里攪勻.
(1)隨機地從盒子里抽取一張,求抽到數(shù)字2的概率;
(2)隨機地從盒子里抽取一張,將數(shù)字記為,不放回再抽取第二張,將數(shù)字記為,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求出點在函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖像與性質(zhì)進(jìn)行了探究,下面是小東的探究過程,請補充完整,并解決相關(guān)問題:
(1)函數(shù)的自變量x的取值范圍是__________________
(2)如表示y與x的幾組對應(yīng)值:
x | … | … | |||||||||||
y | … | m | … |
表中m的值為____________
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出函數(shù)的大致圖像;
(4)結(jié)合函數(shù)圖像,請寫出函數(shù)的2條性質(zhì):
①__________________________________________________________________________
②__________________________________________________________________________
(5)解決問題:如果函數(shù)與直線的交點有2個,那么a的取值范圍是_______________________
(6)在函數(shù)圖像上,若,則m的取值范圍______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一條長為20cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于17cm2,那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于12cm2嗎? 若能,求出兩段鐵絲的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校基礎(chǔ)教育雜志社在我校九年級學(xué)生中開展征文活動,征文主題只能從“愛國”、“敬業(yè)”、“誠信”、“友善”四個主題中選擇一個,九年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了了解選擇各種征文主題的學(xué)生人數(shù).隨機抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:
(1)本次調(diào)查共抽取了多少名學(xué)生的征文,并將上面的條形統(tǒng)計圖補充完整;
(2)這次調(diào)查的四個主題的“眾數(shù)”為 ;
(3)如果我校九年級共有1500名學(xué)生,請估計選擇以“友善”為主題的九年級學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代有著輝煌的數(shù)學(xué)成就,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國古代數(shù)學(xué)的重要文獻(xiàn).
(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,求他選中《九章算術(shù)》的概率;
(2)小聰擬從這4部數(shù)學(xué)名著中選擇2部作為假課外拓展學(xué)習(xí)內(nèi)容,用列表或樹狀圖求選中的名著恰好是《九章算術(shù)》和《周牌算經(jīng)》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過拋物線y=x2+x﹣2與坐標(biāo)軸交點的圓與拋物線另交于點D,與y軸另交于點E,則∠BED=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D在BC邊上(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)若BD=n(0<n<2),求線段AE的長;(用含n的代數(shù)式表示)
(3)當(dāng)△ADE是等腰三角形時,請直接寫出AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com