【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF

2)若BC=,求AB的長(zhǎng)。

【答案】解:(1)證明:四邊形ABCD是矩形,∴DC∥AB。

∴∠OAE=∠OCF∠OEA=∠OFC

∵AE=CF∴△OEA≌△OFCASA)。

∴OE=OF。

2)如圖,連接OB

∵BE=BF,OE=OF∴BO⊥EF,∠ABO=∠OBF

∵∠BEF=2∠BAC,∴∠OBE=∠BAC。

矩形ABCD中,∠ABC=900,∴∠BOE=∠ABC=900

∴△OBE∽△BAC。。

∵∠BEF=2∠BAC,∴∠OAE=∠AOE。∴AE=OE

設(shè)AB=x,AE=OE=y,則。

BC=。

由(1OEA≌△OFC,得AO=CO。

。

,即,

化簡(jiǎn),得。

①②,兩邊平方并化簡(jiǎn),得

,根據(jù)x的實(shí)際意義,得x=6。

BC=, AB的長(zhǎng)為6

【解析】試題分析:(1)根據(jù)△AEO△CFO全等來進(jìn)行說明;(2)連接OB,得出△BOF△BOE全等,然后求出∠BAC的度數(shù),根據(jù)∠BAC的正切值求出AB的長(zhǎng)度.

試題解析:(1四邊形ABCD是矩形,∴AB∥CD ∴∠OAE=∠OCF ∠OEA=∠OFC ∵AE=CF

∴△AEO≌△CFO ∴OE=OF

2)連接BO ∵OE=OF BE=BF

∴BO⊥EF ∠EBO=∠FBO ∴∠BOF=90°

四邊形ABCD是矩形

∴∠BCF=90°

∵∠BEF=2∠BAC ∠BEF=∠BAC+∠EOA

∴∠BAC=∠EOA AE=OE

∵AE=CF OE=OF

∴OF=CF ∵BF=BF

∴Rt△BOF≌Rt△BCF

∴∠OBF=∠CBF

∴∠CBF=∠FBO=∠OBE

∵∠ABC=90° ∠OBE=30°

∴∠BEO=60° ∠BAC=30°

tanBAC=

tan30°=AB=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)A2,-3)向上平移2個(gè)單位后得到的點(diǎn)的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求代數(shù)式的值: ,其中m1

【答案】(1) ,

【解析】先進(jìn)行分式的混合運(yùn)算,再代入求值即可.

解:原式=,

;

當(dāng)m 1時(shí),原式==-

型】解答
結(jié)束】
25

【題目】如圖,在△ABC中,DBC邊的中點(diǎn),過D點(diǎn)分別作DE∥ABAC于點(diǎn)EDF∥ACAB于點(diǎn)F

求證:BF=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進(jìn)價(jià)為每件30元,九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出該商品在第x1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:

x

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

1)分別求出第25天和第60天商家在銷售該商品時(shí)所獲得的利潤(rùn);

2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤(rùn)為6050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形的面積為4a2-4b2,如果它的一邊長(zhǎng)為a+b,則它的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.

)畫一個(gè)三角形,使它的三邊長(zhǎng)都是有理數(shù).

)畫一個(gè)直角三角形,使它們的三邊長(zhǎng)都是無理數(shù).

)畫出與成軸對(duì)稱且與有公共點(diǎn)的格點(diǎn)三角形(畫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.

(1)求證:AE=DF;

(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)定義某種運(yùn)算“*”,對(duì)任意兩個(gè)有理數(shù)a、b,有a*b=ab , 則(﹣2)*3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測(cè)試的平均成績(jī)?yōu)?0分.如果小田考93分記作+13分,那么小潤(rùn)考76分記作 分,小紅考80分記作 分.

查看答案和解析>>

同步練習(xí)冊(cè)答案