【題目】如圖,拋物線G:y1=a(x+1)2+2與H:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:①無論x取何值,y2總是負(fù)數(shù);②拋物線H可由拋物線G向右平移3個單位,再向下平移3個單位得到;③當(dāng)﹣3<x<1時,隨著x的增大,y1﹣y2的值先增大后減。虎芩倪呅AECD為正方形.其中正確的是( 。
A.①③④B.①②④C.②③④D.①②③④
【答案】B
【解析】
①由非負(fù)數(shù)的性質(zhì),即可證得y2=﹣(x﹣2)2﹣1≤﹣1<0,即可得無論x取何值,y2總是負(fù)數(shù);
②由拋物線l1:y1=a(x+1)2+2與l2:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),可求得a的值,然后由拋物線的平移的性質(zhì),即可得l2可由l1向右平移3個單位,再向下平移3個單位得到;
③由 y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,可得隨著x的增大,y1﹣y2的值減小;
④首先求得點(diǎn)A,C,D,E的坐標(biāo),即可證得AF=CF=DF=EF,又由AC⊥DE,即可證得四邊形AECD為正方形.
解:①∵(x﹣2)2≥0,
∴﹣(x﹣2)2≤0,
∴y2=﹣(x﹣2)2﹣1≤﹣1<0,
∴無論x取何值,y2總是負(fù)數(shù);
故①正確;
②∵拋物線G:y1=a(x+1)2+2與拋物線H:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),
∴當(dāng)x=1時,y=﹣2,
即﹣2=a(1+1)2+2,
解得:a=﹣1;
∴y1=﹣(x+1)2+2,
∴H可由G向右平移3個單位,再向下平移3個單位得到;
故②正確;
③∵y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,
∴隨著x的增大,y1﹣y2的值減小;
故③錯誤;
④設(shè)AC與DE交于點(diǎn)F,
∵當(dāng)y=﹣2時,﹣(x+1)2+2=﹣2,
解得:x=﹣3或x=1,
∴點(diǎn)A(﹣3,﹣2),
當(dāng)y=﹣2時,﹣(x﹣2)2﹣1=﹣2,
解得:x=3或x=1,
∴點(diǎn)C(3,﹣2),
∴AF=CF=3,AC=6,
當(dāng)x=0時,y1=1,y2=﹣5,
∴DE=6,DF=EF=3,
∴四邊形AECD為平行四邊形,
∴AC=DE,
∴四邊形AECD為矩形,
∵AC⊥DE,
∴四邊形AECD為正方形.
故④正確.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P(m,n)是線段AD上的動點(diǎn).
(1)求直線AD及拋物線的解析式;
(2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,中,,點(diǎn)從點(diǎn)出發(fā)沿方向勻速運(yùn)動,速度為1點(diǎn)是上位于點(diǎn)右側(cè)的動點(diǎn),點(diǎn)是上的動點(diǎn),在運(yùn)動過程中始終保持,cm.過作交于,當(dāng)點(diǎn)與點(diǎn)重合時點(diǎn)停止運(yùn)動.設(shè)的而積為,點(diǎn)的運(yùn)動時問為,與的函數(shù)關(guān)系如圖②所示:
(1)=_______,=_______;
(2)設(shè)四邊形的面積為,求的最大值;
(3)是否存在的值,使得以,,為頂點(diǎn)的三角形與相似?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,為的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)重合,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交或它們的延長線)于點(diǎn),設(shè),下列四個結(jié)論:①;②; ③;④,正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇在學(xué)習(xí)解直角三角形的知識后,萌生了測量他家對面位于同一水平面的樓房高度的想法,他站在自家C處測得對面樓房底端B的俯角為45°,測得對面樓房頂端A的仰角為30°,并量得兩棟樓房間的距離為9米,請你用小宇測得的數(shù)據(jù)求出對面樓房AB的高度.(結(jié)果保留到整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)交x軸于點(diǎn)A(2,0),B(﹣3,0),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)d(﹣6,﹣6),連接AD,BD.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)若點(diǎn)M為X軸上方的拋物線上一點(diǎn),能否在點(diǎn)A左側(cè)的x軸上找到另一點(diǎn)N,使得△AMN與△ABD相似?若相似,請求出此時點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是直線AD上方的拋物線上一動點(diǎn)(不與A,D重合),過點(diǎn)P作PQ∥y軸交直線AD于點(diǎn)Q,以PQ為直徑作⊙E,則⊙E在直線AD上所截得的線段長度的最大值等于 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了扎實(shí)推進(jìn)精準(zhǔn)扶貧工作,某市出臺了民生兜底、醫(yī)保脫貧、教育教助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為類貧困戶。為檢查幫扶措施是否落實(shí),隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調(diào)查了多少戶貧困戶;
(2)抽查了多少戶類貧困戶?并補(bǔ)全統(tǒng)計圖;
(3)若該地共有1300戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶;
(4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從類貧困戶中的甲、乙、丙、丁四戶中隨機(jī)選取兩戶進(jìn)行重點(diǎn)幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com