【題目】若新規(guī)定這樣一種運(yùn)算法則:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.
(1)試求(﹣2)※3的值;
(2)若(﹣5)※x=﹣2﹣x,求x的值.
【答案】
(1)解:根據(jù)題中新定義得:(﹣2)※3=(﹣2)2+2×(﹣2)×3=4+(﹣12)=﹣8
(2)解:根據(jù)題意:(﹣5)2+2×(﹣5)×x=﹣2﹣x,
整理得:25﹣10x=﹣2﹣x,
解得:x=
【解析】(1)利用題中新定義計(jì)算即可得到結(jié)果;(2)已知等式利用新定義化簡,求出方程的解即可.
【考點(diǎn)精析】本題主要考查了解一元一次方程的步驟和有理數(shù)的四則混合運(yùn)算的相關(guān)知識點(diǎn),需要掌握先去分母再括號,移項(xiàng)變號要記牢.同類各項(xiàng)去合并,系數(shù)化“1”還沒好.求得未知須檢驗(yàn),回代值等才算了;在沒有括號的不同級運(yùn)算中,先算乘方再算乘除,最后算加減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個判斷:①當(dāng)x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為6.其中正確判斷的序號是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣2x+6的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.試求出△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A、B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,x<0)圖象的兩個交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.動點(diǎn)在軸上運(yùn)動,過點(diǎn)作軸,交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求拋物線的解析式和直線的解析式;
(Ⅱ)當(dāng)點(diǎn)在線段上運(yùn)動時,求線段的最大值;
(Ⅲ)當(dāng)以、、、為頂點(diǎn)的四邊形是平行四邊形時,直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com