【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

【答案】
(1)證明:∵對角線BD平分∠ABC,

∴∠ABD=∠CBD,

在△ABD和△CBD中,

,

∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB


(2)證明:∵PM⊥AD,PN⊥CD,

∴∠PMD=∠PND=90°,

∵∠ADC=90°,

∴四邊形MPND是矩形,

∵∠ADB=∠CDB,

∴∠ADB=45°

∴PM=MD,

∴四邊形MPND是正方形.


【解析】(1)根據(jù)角平分線的性質和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】大于﹣1.5小于2.5的整數(shù)共有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,是關于x的一元二次方程的為( 。

A.x+y3B.3x+y22C.2xx23D.xx22)=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長為 , CD的長為 , AD的長為;
(3)△ACD為三角形,四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點O,CAB=500C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形的兩邊長分別是47,則這個三角形的第三條邊的長可能是(  )

A. 12 B. 11 C. 8 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套,設安排x名工人生產螺釘,則下面所列方程正確的是( )
A.1000(26﹣x)=800x
B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x
D.2×1000(26﹣x)=800x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=110°,OD平分∠BOCOE平分∠AOC。

(1)求∠EOD的度數(shù)。

(2)若∠BOC=90°,求∠AOE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家今年種植的草莓喜獲豐收,采摘上市20天全部銷售完,爸爸讓他對今年的銷售情況進行跟蹤記錄,小明利用所學的數(shù)學知識將記錄情況繪成圖象(所得圖象均為線段),日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖1所示,草莓的價格w(單位:元/千克)與上市時間x(單位:天)的函數(shù)關系如圖2所示.

(1)觀察圖象,直接寫出當0≤x≤11時,日銷售量y與上市時間x之間的函數(shù)解析式為 ;

11≤x≤20時,日銷售量y與上市時間x之間的函數(shù)解析式為

2)試求出第11天的銷售金額;

3)若上市第15天時,爸爸把當天能銷售的草莓批發(fā)給了鄰居馬叔叔,批發(fā)價為每千克15元,馬叔叔到市場按照當日的價格w/千克將批發(fā)來的草莓全部銷售完,他在銷售的過程中,草莓總質量損耗了2%.那么,馬叔叔支付完來回車費20元后,當天能賺到多少元?

查看答案和解析>>

同步練習冊答案