【題目】已知:如圖,正方形ABCD中,點F是對角線BD上的一個動點.

(1)如圖1,連接AF,CF,直接寫出AFCF的數(shù)量關系;

(2)如圖2,點EAD邊的中點,當點F運動到線段EC上時,連接AF,BE相交于點O.

①請你根據(jù)題意在圖2中補全圖形;

②猜想AFBE的位置關系,并寫出證明此猜想的思路;

③如果正方形的邊長為2,直接寫出AO的長.

【答案】(1)AF=CF(2)① 圖形見解析②.

【解析】試題分析:(1)根據(jù)正方形的對稱性即可得結論;(2)①根據(jù)題意,補全圖形即可;②AFBE,由四邊形ABCD是正方形,可得AD=CD,ADB=CDB.進而可得ΔADFΔCDF.從而得到1=2;E為正方形ABCDAD邊的中點,可證ΔABEΔDCE.從而得到∠3=4;由∠2+4=90°可知∠1+3=90°,進而可得∠AOE=90°,AFBE.③根據(jù)勾股定理可得BE=,因AFBE,根據(jù),即可求得AO的長.

試題解析:

(1)解:AF=CF.

(2)解:① 補全圖形:

.

證明思路如下:

(i)由四邊形ABCD是正方形,

可得ADCDADBCDB.

進而可得.從而得到1=2.

(ii)E為正方形ABCDAD邊的中點,可證.

從而得到∠3=4.

(iii)由∠2+4=90°可知∠1+3=90°,進而可得∠AOE=90°.

.

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(2a4)x2(3a6)xa80沒有常數(shù)項,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC和△DEF中,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;
②AB=DE,∠B=∠E,BC=EF;
③∠B=∠E,BC=EF,AC=DF;
④∠A=∠D,∠B=∠E,∠C=∠F.
其中,能使△ABC≌△DEF的條件共有( )
A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過E點作EF∥AB(經(jīng)過直線外一點有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.

解:因為EF∥AD(已知)

所以∠2=∠3.( )

又因為∠1=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因為∠BAC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,已知:點在雙曲線上,直線,直線關于原點成中心對稱,兩點間的連線與曲線第一象限內的交點為是曲線上第一象限內異于的一動點,過軸平行線分別交,兩點.

(1)求雙曲線及直線的解析式;

(2)求證:;

(3)如圖2所示,的內切圓與邊分別相切于點,求證:點與點重合.(參考公式:在平面坐標系中,若有點,,則A、B兩點間的距離公式為=.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)2xx;

(2)3(5x6)320x

(3) x1;

(4) 3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東省泰安市第26題)某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.

(1)求兩種球拍每副各多少元?

(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O的半徑為5,直線AB與⊙O有交點,則直線AB到⊙O的距離可能為(  )
A.5.5
B.6
C.4.5
D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)的圖象與BC邊交于點E.

FAB的中點時,求該函數(shù)的解析式;

k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案