【題目】田忌賽馬的故事為我們熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊10、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取出一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取得牌不能放回.
(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出10時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.

【答案】
(1)解:畫(huà)樹(shù)狀圖得:

∵每人隨機(jī)取一張牌共有9種情況,小齊獲勝的情況有(8,9),(6,9),(6,7)共3種,

∴小齊獲勝的概率為P1= ;


(2)解:據(jù)題意,小亮出牌順序?yàn)?、8、10時(shí),

小齊隨機(jī)出牌的情況有6種情況:(9,7,5),(9,5,7),(7,9,5),(7,5,9),(5,9,7),(5,7,9),7 分

∵小齊獲勝的情況只有(7,9,5)一種,

∴小齊獲勝的概率為P2=


【解析】(1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與小齊本“局”獲勝的情況,利用概率公式即可求得答案;(2)據(jù)題意,小亮出牌順序?yàn)?、8、10時(shí),小齊隨機(jī)出牌的情況有:(9,7,5),(9,5,7),(7,9,5),(7,5,9),(5,9,7),(5,7,9),又由小齊獲勝的情況只有(7,9,5)一種,利用概率公式即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠(chǎng)決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線(xiàn)經(jīng)過(guò)點(diǎn)C、A、A′,求此拋物線(xiàn)的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線(xiàn)上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線(xiàn)上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)城公司為希望小學(xué)捐贈(zèng)甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號(hào),乙品牌有D、E兩種型號(hào),現(xiàn)要從甲、乙兩種品牌的器材中各選購(gòu)一種型號(hào)進(jìn)行捐贈(zèng).
(1)寫(xiě)出所有的選購(gòu)方案(用列表法或樹(shù)狀圖);
(2)如果在上述選購(gòu)方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是矩形ABCD的一條對(duì)角線(xiàn).

(1)作BD的垂直平分線(xiàn)EF,分別交AD、BC于點(diǎn)E、F,垂足為點(diǎn)O(用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法);

(2)求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,PCD邊上的動(dòng)點(diǎn)(P點(diǎn)不與C、D重合),過(guò)點(diǎn)P作直線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP=x,PBF的面積為S1,PDE的面積為S2

(1)求證:BPDE;

(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫(xiě)出x的取值范圍;

(3)當(dāng)∠PBF=30°時(shí),求S1﹣S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA,OB分別在x軸,y軸的正半軸上(OA<OB),且OA,OB的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)根,線(xiàn)段AB的垂直平分線(xiàn)CD交AB于點(diǎn)C,分別交x軸,y軸于點(diǎn)D,E.

(1)直接寫(xiě)出點(diǎn)A、B的坐標(biāo):A , B;
(2)求線(xiàn)段AD的長(zhǎng);
(3)已知P是直線(xiàn)CD上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線(xiàn)AB上一個(gè)動(dòng)點(diǎn),則在坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是以5為邊長(zhǎng)的正方形?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是(
A.(6,0)
B.(6,3)
C.(6,5)
D.(4,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案