【題目】如圖1,在直角梯形ABCD中,動(dòng)點(diǎn)PB點(diǎn)出發(fā),沿BCDA勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,圖象如圖2所示.

1)在這個(gè)變化中,自變量、因變量分別是   、   ;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x4時(shí),△ABP的面積為y   

3)求AB的長和梯形ABCD的面積.

【答案】1x,y(2)16;(3)AB=8,梯形ABCD的面積=26

【解析】

1)依據(jù)點(diǎn)P運(yùn)動(dòng)的路程為xABP的面積為y,即可得到自變量和因變量;

2)依據(jù)函數(shù)圖象,即可得到點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),ABP的面積;

3)根據(jù)圖象得出BC的長,以及此時(shí)三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數(shù)圖象得出DC的長利用梯形面積公式求出梯形ABCD面積即可

1∵點(diǎn)P運(yùn)動(dòng)的路程為x,ABP的面積為y∴自變量為x,因變量為y

故答案為:x,y

2)由圖可得當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),ABP的面積為y=16

故答案為:16;

3)根據(jù)圖象得BC=4,此時(shí)△ABP16ABBC=16,×AB×4=16解得AB=8;

由圖象得DC=94=5S梯形ABCD=×BC×DC+AB)=×4×5+8)=26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2CQ=9時(shí)BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠?/span>

(1)x2-4x+1=0

(2)(2x+1)2=3(2x+1)

(3)(x+3)(x-6)=-8

(4)2x2-x-15=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣東省深圳市)荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費(fèi)90元;后又購買了1千克桂味和2千克糯米糍,共花費(fèi)55元.(每次兩種荔枝的售價(jià)都不變)

(1)求桂味和糯米糍的售價(jià)分別是每千克多少元;

(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對(duì)角線AC,垂足是E,連接BE.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AB=BE=2,sin∠ACD= ,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

1)點(diǎn)DBC運(yùn)動(dòng)時(shí),∠BDA逐漸變______(填);設(shè)∠BAD=x°,∠BDA=y°,求yx的函數(shù)關(guān)系式;

2)當(dāng)DC的長度是多少時(shí),ABD≌△DCE,請(qǐng)說明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過程中,ADE的形狀也在改變,當(dāng)∠BDA等于多少度時(shí),ADE是等腰三角形?判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖①所示的程序,得到了如圖②y與x的函數(shù)圖像,若點(diǎn)M是y軸正半軸上任意一點(diǎn),過點(diǎn)M作PQ∥x軸交圖像于點(diǎn)P、Q,連接OP、OQ.則以下結(jié)論:

①x<0時(shí),y=; ②△OPQ的面積為定值; ③x>0時(shí),y隨x的增大而增大;

④MQ=2PM; ⑤∠POQ可以等于90°.

其中正確結(jié)論序號(hào)是

A. ①②③ B. ②③④ C. ③④⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,有下列5個(gè)結(jié)論:①abc0;ba﹣c;4a+2b+c0;2c3b;a+bmam+b),(m≠1的實(shí)數(shù))⑥2a+b+c0,其中正確的結(jié)論的有(  )

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案