【題目】小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為A,B,C.
(1)若小明將一袋分好類的生活垃圾隨機投入一類垃圾箱,請畫樹狀圖或列表求垃圾投放正確的概率;
(2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)三類垃圾箱中總共100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下表(單位:噸):
試估計該小區(qū)居民“廚余垃圾”投放正確的概率約是多少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相較于A.B兩點,與y軸相交于點C(0,-3),拋物線的對稱軸為直線x=1.
(1)求二次函數(shù)的解析式;
(2)若拋物線的頂點為D,點E在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,直線AE交對稱軸于點F,試判斷四邊形CDEF的形狀,并說明理由;
(3)若點M在x軸上,點P在拋物線上,是否存在以點A,E,M,P為頂點且以AE為一邊的平行四邊形?若存在,請求出所有滿足要求的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x+1與y軸交于點A,與x軸交于點D,拋物線y= x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標(biāo)為(1,0).在拋物線的對稱軸上找一點M,使|AM﹣MC|的值最大,求出點M的坐標(biāo)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程
(1)求證:不論m取何值時,方程總有兩個不相等的實數(shù)根
(2)若方程的一個根為1,求m的值及方程的另一根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉(zhuǎn)得到正方形此時,點落在對角線AC上,點落在CD的延長線上,交AD于點E,連接、CE.
求證:(1)≌;
(2)直線CE是線段的垂直平分線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com