【題目】如圖,和都是等邊三角形,和交于點.
(1)求證:;
(2)下列結(jié)論中,正確的有________個.
①;②;③平分;④平分.
(3)請選擇(2)中任一正確結(jié)論進(jìn)行證明.你選的序號是 _________.
【答案】(1)見解析;(2)2個;(3)②或③;證明見解析
【解析】
(1)根據(jù)等邊三角形的性質(zhì)依據(jù)SAS可證得,從而證得緒論;
(2)根據(jù)(1)的結(jié)論以及等邊三角形的性質(zhì)可證得②③正確;
(3)選擇②利用(2)的結(jié)論結(jié)合三角形內(nèi)角和即可證得;選擇③利用(2)的結(jié)論以及三角形面積結(jié)合角平分線的性質(zhì)即可證得結(jié)論.
(1) ∵和都是等邊三角形
∴,,,
∴,
即,
∴,
∴;
(2)如圖,
顯然:①,故①錯誤;
④不平分,故④錯誤;
只有②和③是正確的,共2個;
故答案為:個;
(3)選擇②:∵
∴
又因為
∴
∴
選擇③:∵
∴,
過分別作于點,作于點,
∴
∴
∴點在的平分線上
∴平分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與直線交于點與軸交于點,點在軸上,過點作軸于點,交于點,交于.
(1)求直線的解析式和點坐標(biāo).
(2)求①的面積與的關(guān)系式.并求出當(dāng)的面積為時,點坐標(biāo).在軸上確定點,使得的面積等于面積,直接寫出點的坐標(biāo);
②若直線將分成面積相等的兩部分,求的值.
③若是直線上一點,點是直線上一點,使得當(dāng)沿著折疊后與重合,請直接寫出點和點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F.連接DF并延長交BC的延長線于點G.
(1)求證:AF=GC;
(2)若BD=6,AD=4,求⊙O的半徑;
(3)在(2)的條件下,求圖中由弧EF與線段CF、CE圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.連接AD、BC,點M、N、P分別為OA、OD、BC的中點.
①若A、O、C三點在同一直線上,且∠ABO=2α,則 =_____(用含有α的式子表示);
②固定△AOB,將△COD繞點O旋轉(zhuǎn),PM最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知頂點為A的拋物線y=a(x- )2-2經(jīng)過點B(- ,2),點C(,2).
(1)求拋物線的解析式;
(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;
(3)如圖2,點Q是折線A﹣B﹣C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN1,若點N1落在x軸上,請直接寫出Q點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的,若小方格邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點,的坐標(biāo)分別為,.
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)作出三角形關(guān)于y 軸對稱的三角形;
(3)判斷的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com