【題目】在平面直角坐標系xOy中,已知一次函數(shù)的圖象經(jīng)過點A(5,0),B(1,4).
(1)求這個一次函數(shù)的表達式;
(2)直線AB、直線y=2x﹣4與y軸所圍成的三角形的面積為 .
【答案】(1)y=﹣x+5;(2).
【解析】
(1)利用待定系數(shù)法即可求得;
(2)求得直線AB,直線y=2x﹣4與y軸的交點,以及兩直線的交點坐標,然后根據(jù)三角形面積公式,即可求解.
(1)設(shè)一次函數(shù)的解析式為:y=kx+b,
∵一次函數(shù)的圖象經(jīng)過點A(5,0),B(1,4),
∴,解得:,
∴一次函數(shù)的表達式為:y=﹣x+5;
(2)聯(lián)立,解得:,
∴兩直線的交點坐標為:(3,2),
直線y=2x﹣4中,令x=0,則y=﹣4;直線y=﹣x+5中,令x=0,則y=5.
∴兩直線與y軸的交點分別為:(0,﹣4)和(0,5),
∴直線AB、直線y=2x﹣4與y軸所圍成的三角形的面積為:,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標中,反比例函數(shù)y=(x>0)的圖象經(jīng)過點A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,AC與BD交于點E,連接AD,DC,CB.
(1)求k的值;
(2)求證:DC∥AB;
(3)當(dāng)AD∥BC時,求直線AB的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的對角線AC,BD相交于點O.
(1)如圖1,E,G分別是OB,OC上的點,CE與DG的延長線相交于點F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點,過點H作EH⊥BC,交線段OB于點E,連結(jié)DH交CE于點F,交OC于點G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時,求HC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DCB中,AC與BD相交于點O,下列四組條件中,不能證明△ABC≌△DCB的是( )
A.AB=DC,AC=DBB.AB=DC,∠ABC=∠DCB
C.BO=CO,∠A=∠DD.∠ABD=∠DCA,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型水果超市銷售無錫水蜜桃,根據(jù)前段時間的銷售經(jīng)驗,每天的售價x(元/箱)與銷售量y(箱)有如表關(guān)系:
每箱售價x(元) | 68 | 67 | 66 | 65 | … | 40 |
每天銷量y(箱) | 40 | 45 | 50 | 55 | … | 180 |
已知y與x之間的函數(shù)關(guān)系是一次函數(shù).
(1)求y與x的函數(shù)解析式;
(2)水蜜桃的進價是40元/箱,若該超市每天銷售水蜜桃盈利1600元,要使顧客獲得實惠,每箱售價是多少元?
(3)七月份連續(xù)陰雨,銷售量減少,超市決定采取降價銷售,所以從7月17號開始水蜜桃銷售價格在(2)的條件下,下降了m%,同時水蜜桃的進貨成本下降了10%,銷售量也因此比原來每天獲得1600元盈利時上漲了2m%(m<100),7月份(按31天計算)降價銷售后的水蜜桃銷售總盈利比7月份降價銷售前的銷售總盈利少7120元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:凡購買原價超過200元的商品,超過200元的部分可以享受打折優(yōu)惠若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)之間的函數(shù)關(guān)系的a圖象如圖所示,則圖中a的值是( 。
A.300B.320C.340D.360
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),點A,點B的橫坐標是一元二次方程x2﹣4x﹣12=0的兩個根.
(1)求出點A,點B的坐標.
(2)求出該二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分線交AC于點D,E是AB上一點,且BE=BC,CF∥ED交BD于點F,連接EF,ED.
(1)求證:四邊形CDEF是菱形.
(2)當(dāng)∠ACB= 度時,四邊形CDEF是正方形,請給予證明;并求此時正方形的邊長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com