【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上,頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為_____.
【答案】
【解析】
作輔助線,首先求出∠D′AB的大小,進而求出旋轉的角度,利用弧長公式問題即可解決.
解:如圖,分別連接OA、OB、OD′、OC、OC′;
∵OA=OB=AB,
∴△OAB是等邊三角形,
∴∠OAB=60°;
同理可證:∠OAD′=60°,
∴∠D′AB=120°;
∵∠D′AB′=90°,
∴∠BAB′=120°﹣90°=30°,
由旋轉變換的性質可知∠C′AC=∠B′AB=30°;
∵四邊形ABCD為正方形,且邊長為2,
∴∠ABC=90°,AC=,
∴當點D第一次落在圓上時,點C運動的路線長為:.
以D或B為圓心滾動時,每次C點運動,
以A做圓心滾動兩次,以B和D做圓心滾動三次,
所以總路徑=.
故答案為:π.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點I和O分別是△ABC的內(nèi)心和外心,則∠AIB和∠AOB的關系為( 。
A. ∠AIB=∠AOBB. ∠AIB≠∠AOB
C. 2∠AIB﹣∠AOB=180°D. 2∠AOB﹣∠AIB=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段AB和CD,點A,B,C,D均在小正方形頂點上.
(1)在方格紙中畫出面積為5的等腰直角△ABE,且點E在小正方形的頂點上;
(2)在方格紙中畫出面積為3的等腰△CDF,其中CD為一腰,且點F在小正方形的頂點上;
(3)在(1)(2)條件下,連接EF,請直接寫出線段EF長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)經(jīng)過點(﹣1,0),且滿足4a+2b+c>0,有下列結論:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正確結論的個數(shù)是( 。
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進我市生態(tài)文明建設,某校在美化校園活動中,設計小組想借助如圖所示的直角墻角(兩邊足夠長),用30m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為216m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和8m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在趣味運動會“定點投籃”項目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個、20個 B. 22個、21個 C. 20個、21個 D. 20個、22個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為( )
A.8B.10C.13D.14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點P(m,n)是該拋物線的頂點,若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 A 的坐標是(﹣2,0),點 B 的坐標是(0,6),C 為 OB 的中點,將△ABC 繞點 B 逆時針旋轉 90°后得到△A′B′C′.若反比例函數(shù) y 的圖象恰好經(jīng)過 A′B 的中點 D,則k _________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com