【題目】直線y=﹣x+3x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.

(1)直接寫出拋物線的解析式和點A,C,D的坐標;

(2)動點PBD上以每秒2個單位長的速度由點B向點D運動,同時動點QCA上以每秒3個單位長的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設運動時間為t秒.PQ交線段AD于點E.

①當∠DPE=CAD時,求t的值;

②過點EEMBD,垂足為點M,過點PPNBD交線段ABAD于點N,當PN=EM時,求t的值.

【答案】(1)點A(2,0),點C(6,0),點D(4,3),(2)①秒;(2)t=(1﹣)秒或t=秒.

【解析】1)先由直線解析式求得點A、B坐標,將點A坐標代入拋物線解析式求得m的值,從而得出答案;

(2)①由(1)BD=AC、BD//OC,根據(jù)AB=AD=證四邊形ABPQ是平行四邊形得AQ=BP,即2t=4-3t,解之即可;

②分點NAB上和點NAD上兩種情況分別求解.

(1)在中,令,令,

∴點、點,

將點代入拋物線解析式,得:,

解得:,

所以拋物線解析式為,

y

∴點,對稱軸為,

∴點C坐標為;

(2)如圖1,

(1),

根據(jù),得:,

①∵、

,

,

,

、,

,

,

∴四邊形ABPQ是平行四邊形,

,即,

解得:,

即當時,秒;

當點NAB上時,,即

連接NE,延長PNx軸于點F,延長MEx軸于點H,

、,,,

,、,,

,

∵點N在直線上,

∴點N的坐標為,

,

,

,

、,

∴直線AD解析式為,

∵點E在直線上,

∴點E的坐標為,

,

解得:;

當點NAD上時,,即,

∴點E、N重合,此時,

,

解得:

綜上所述,當時,秒或

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】過矩形ABCD的對角線AC的中點OEFAC,交BC邊于點E,交AD邊于點F,分別連接AE,CF

1)求證:四邊形AECF是菱形;

2)若AB6AC10,EC,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調(diào)查,下表是這10戶居民20184月份用電量的調(diào)查結果:

居民()

1

2

3

4

月用電量()

30

42

50

51

那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是(  )

A. 中位數(shù)是50 B. 眾數(shù)是51

C. 方差是422 D. 平均數(shù)是46.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在同一直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標軸分別交于點A點 B和點C,一次函數(shù)的圖象與拋物線交于B、C兩點.

(1)將這個二次函數(shù)化為的形式為 。

(2)當自變量滿足 時,兩函數(shù)的函數(shù)值都隨增大而增大。

(3)當自變量滿足 時,一次函數(shù)值大于二次函數(shù)值。

(4)當自變量滿足 時,兩個函數(shù)的函數(shù)值的積小于0。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以點O為原點的直角坐標系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點B,點C在第二象限內(nèi)且為直線AB上一點,OC=AB,反比例函數(shù)y=的圖象經(jīng)過點C,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組條件中,不能判斷△ABC≌△DEF的是(

A. ∠A=∠D,AB=DE,∠B=∠E B. AB=DE,∠A=∠D,BC=EF

C. AB=DE,BC=EF,AC=DF D. ∠B=∠E=90°,AB=DE,AC=DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,、兩點分別在邊上,,相交于點,若的面積為,則的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程時,配方正確的是(  )

A. 方程x2-6x-5=0,可化為(x-3)2=4

B. 方程y2-2y-2 015=0,可化為(y-1)2=2 015

C. 方程a2+8a+9=0,可化為(a+4)2=25

D. 方程2x2-6x-7=0,可化為

查看答案和解析>>

同步練習冊答案