【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4)、點(diǎn)B(﹣4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
【答案】
(1)解:把A點(diǎn)(1,4)分別代入反比例函數(shù)y= ,一次函數(shù)y=x+b,
得k=1×4,1+b=4,
解得k=4,b=3,
所以反比例函數(shù)的解析式是y= ,一次函數(shù)解析式是y=x+3
(2)解:如圖,
設(shè)直線y=x+3與y軸的交點(diǎn)為C,
當(dāng)x=﹣4時(shí),y=﹣1,
∴B(﹣4,﹣1),
當(dāng)x=0時(shí),y=3,
∴C(0,3),
∴S△AOB=S△AOC+S△BOC= ×3×1+ ×3×4=
(3)解:∵B(﹣4,﹣1),A(1,4),
∴根據(jù)圖象可知:當(dāng)x>1或﹣4<x<0時(shí),一次函數(shù)值大于反比例函數(shù)值.
【解析】(1)把A的坐標(biāo)代入反比例函數(shù)解析式求出A的坐標(biāo),把A的坐標(biāo)代入一次函數(shù)解析式求出即可;(2)求出直線AB與y軸的交點(diǎn)C的坐標(biāo),分別求出△ACO和△BOC的面積,然后相加即可;(3)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF= ∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果某一年的7月份中,有4個(gè)星期六,它們的日期之和為70,那么這個(gè)月的18日是星期 _____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( 。
A. 同位角相等B. 三角形的高在三角形內(nèi)部
C. 平行于同一直線的兩條直線平行D. 兩個(gè)角的兩邊分別平行,則這兩個(gè)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線AB交⊙O于C、D兩點(diǎn),CE是⊙O的直徑,CF平分∠ACE交⊙O于點(diǎn)F,連接EF,過(guò)點(diǎn)F作FG∥ED交AB于點(diǎn)G.
(1)求證:直線FG是⊙O的切線;
(2)若FG=4,⊙O的半徑為5,求四邊形FGDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)某商場(chǎng)用2500元購(gòu)進(jìn)了A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià),標(biāo)價(jià)如下表所示:
(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
(2)若A型臺(tái)燈按標(biāo)價(jià)的九折出售,B型臺(tái)燈按標(biāo)價(jià)的八折出售,那么這批臺(tái)燈全部售完后,商場(chǎng)共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=(x﹣1)2+2的頂點(diǎn)坐標(biāo)是( 。
A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com