【題目】在滑草過程中,小明發(fā)現(xiàn)滑道兩邊形如兩條雙曲線,如圖,點A1,A2,A3…在反比例函數(shù)yx0)的圖象上,點B1,B2B3…反比例函數(shù)yk1,x0)的圖象上,A1B1A2B2…∥y軸,已知點A1,A2…的橫坐標分別為1,2,…,令四邊形A1B1B2A2、A2B2B3A3、…的面積分別為S1S2、….若S1939,則k__

【答案】761

【解析】

根據(jù)反比例函數(shù)圖象上點的特征和平行于y軸的直線的性質(zhì)計算A1B1、A2B2,最后根據(jù)梯形面積公式可得S1、S2S3…Sn的值并找規(guī)律,根據(jù)已知S19=39列方程可得k的值.

解:∵A1B1//A2B2//y軸,

A1B1的橫坐標相等,A2B2的橫坐標相等,…,AnBn的橫坐標相等,

∵點A1,A2…的橫坐標分別為1,2,…,

∴點B1,B2…的橫坐標分別為1,2,…,

∵點A1,A2A3…在反比例函數(shù)y=x0)的圖象上,點B1B2,B3…反比例函數(shù)y=k1x0)的圖象上,

A1B1=k-1A2B2=,

S1=×1×(-+k-1)=(k-)=,

同理得:A3B3=-=,A4B4=,…,

S2==(k-1)

S3==(k-1)

…,

Sn=

S19=39,

×(k-1)=39,

解得:k=761,

故答案為:761

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣33)及原點O,頂點為C

1)求拋物線的解析式;

2)若點D在拋物線上,點E在拋物線的對稱軸上,且A、O、DE為頂點的四邊形是平行四邊形,求點D的坐標;

3P是拋物線上的第一象限內(nèi)的動點,過點PPMx軸,垂足為M,是否存在點P,使得以P、MA為頂點的三角形BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3x軸于點A,交y軸于點B,拋物線yax2+bx+c經(jīng)過A、B、C1,0)三點.

1)求拋物線的解析式;

2)觀察圖象,寫出不等式ax2+bx+c>﹣x+3的解集為   ;

3)若點D的坐標為(﹣10),在直線y=﹣x+3上有一點P,使△ABO與△ADP相似,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個四位數(shù),如果千位與十位上的數(shù)字之和為7,百位與個位上的數(shù)字之和也為7,那么稱上進數(shù)

(1)寫出最小和最大的上進數(shù);

(2)一個上進數(shù),若,且使一元二次方程有兩個不相等的實數(shù)根,求這個上進數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作⊙OBC于點D.過點DEFAC,垂足為E,且交AB的延長線于點F

1)求證:EF是⊙O的切線;

2)已知AB4,AE3.求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意三點A,BC,給出如下定義:若矩形的任何一條邊均與某條坐標軸平行或重合,且AB,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的外延矩形,點AB,C的所有外延矩形中,面積最小的矩形稱為點A,BC的最佳外延矩形.例如,圖①中的矩形A1B1C1D1,A2B2C2D2A3B3CD3,都是點A,B,C的外延矩形,矩形A3B3CD3是點A,B,C的最佳外延矩形.

1)如圖②,已知A(﹣10),B3,2),點C在直線yx1上,設點C的橫坐標為t

①若t,則點AB,C的最佳外延矩形的面積為多少?

②若點A,B,C的最佳外延矩形的面積為9,求t的值.

2)如圖③,已知點M4,0),N0,),Px,y)是拋物線y=﹣x2+2x+3上一點,求點M,N,P的最佳外延矩形面積的最小值,以及此時點P的橫坐標x的取值范圍;

3)已知D10).若Q是拋物線y=﹣x22mxm2+2m+1的圖象在﹣2x1之間的最高點,點E的坐標為(0,4m),設點D,EQ的最佳外延矩形的面積為S,當4S6時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,為坐標原點.直線與拋物線同時經(jīng)過.

1)求的值.

2)點是二次函數(shù)圖象上一點,(下方),過軸,與交于點,與軸交于點.的最大值.

3)在(2)的條件下,是否存在點,使相似?若存在,求出點坐標,不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的坐標為,過點作不軸的垂線交直于點以原點為圓心,的長為半徑斷弧交軸正半軸于點;再過點軸的垂線交直線于點,以原點為圓心,的長為半徑畫弧交軸正半軸于點;…按此作法進行下去,的長是____________

查看答案和解析>>

同步練習冊答案