(本小題滿分11分)
如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線
BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖①,當(dāng)點M在點B左側(cè)時,請你判斷EN與MF有怎樣的數(shù)量關(guān)系?點F與直線EN有怎樣的位置關(guān)系?都請直接寫出結(jié)論,不必證明或說明理由;
(2)如圖②,當(dāng)點M在BC上時,其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請利用圖②證明;若不成立,請說明理由;
(3)若點M在點C右側(cè)時,請你在圖③中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系及點F與直線EN的位置關(guān)系是否仍然成立?若成立?請直接寫出結(jié)論,不必證明或說明理由.
(1)判斷:EN與MF相等(或EN=MF),點F在直線NE上 ······ 3分
(說明:答對一個給2分)
(2)成立.································ 4分
證明:
法一:連結(jié)DE,DF. ··········································································· 5分
∵△ABC是等邊三角形,∴AB=AC=BC.
又∵D,E,F(xiàn)是三邊的中點,
∴DE,DF,EF為三角形的中位線.∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE. ················································································ 7分
在△DMF和△DNE中,DF=DE,DM=DN,∠MDF=∠NDE,
∴△DMF≌△DNE. ··············································································· 8分
∴MF=NE. ··············································································· 9分
法二:
延長EN,則EN過點F. ······································································ 5分
∵△ABC是等邊三角形,∴AB=AC=BC.又∵D,E,F(xiàn)是三邊的中點,∴EF=DF=BF.
∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN.······················· 7分
又∵DM=DN,∠ABM=∠DFN=60°,∴△DBM≌△DFN.································· 8分
∴BM=FN.∵BF=EF, ∴MF=EN.···························································· 9分
法三:
連結(jié)DF,NF. ······················································································ 5分
∵△ABC是等邊三角形,∴AC=BC=AC.
又∵D,E,F(xiàn)是三邊的中點,∴DF為三角形的中位線,∴DF=AC=AB=DB.
又∠BDM+∠MDF=60°,∠NDF+∠MDF=60°,∴∠BDM=∠FDN. ………………7分
在△DBM和△DFN中,DF=DB,
DM=DN,∠BDM=∠NDF,∴△DBM≌△DFN.
∴∠B=∠DFN=60°.…………………………………………………………………8分
又∵△DEF是△ABC各邊中點所構(gòu)成的三角形,
∴∠DFE=60°.∴可得點N在EF上,∴MF=EN.………………………………9分
(3)畫出圖形(連出線段NE), ······························································· 10分
MF與EN相等及點F在直線NE上的結(jié)論仍然成立(或MF=NE成立). ················ 11分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分11分)已知直線與軸軸分別交于點A和點B,點B的坐標(biāo)為(0,6)
(1)求的值和點A的坐標(biāo);
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設(shè)BP=,梯形PEAC的面積為。
①求與的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是△OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長為2.4時點P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省梅州中學(xué)九年級下學(xué)期3月月考數(shù)學(xué)卷 題型:解答題
(本小題滿分11分)已知直線與軸軸分別交于點A和點B,點B的坐標(biāo)為(0,6)
(1)求的值和點A的坐標(biāo);
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設(shè)BP=,梯形PEAC的面積為。
①求與的函數(shù)關(guān)系式,并寫出的取值范圍;
②⊙Q是△OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長為2.4時點P的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com