【題目】二次函數(shù)的部分對應(yīng)值如下表:
x | … | -3 | -2 | 0 | 3 | 5 | … |
y | … | 7 | 0 | -8 | -5 | 7 | … |
則以下四個結(jié)論:①圖象的開口向上;②函數(shù)的最小值為-8;③方程的兩根分別-2,4;④若y<-5,則-1<x<3.其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
先觀察表格找到使函數(shù)值相等的兩個自變量的值,求出拋物線的對稱軸,然后根據(jù)拋物線的對稱性補全表格中遺漏的對應(yīng)值,再分析函數(shù)的開口方向,與軸的交點的橫坐標(biāo)就是的解,最后根據(jù)圖像得出當(dāng)y<-5時,自變量的范圍.
解:由表格信息知道:當(dāng) 當(dāng),所以可以得到拋物線的對稱軸是,從而發(fā)現(xiàn)在時,函數(shù)值最小,所以函數(shù)圖像開口向上,所以①正確.
從表中得當(dāng)時, ,此時函數(shù)值不是最小值,所以②錯誤.
當(dāng)時,,即,所以是的一個根,由拋物線的對稱性找到第二個根為,所以③正確.
當(dāng)時,,由對稱性知道當(dāng)時,,結(jié)合圖像的開口向上,知道y<-5,則-1<x<3,所以④正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點D在半圓O上,AB=13,AD=5,C是弧BD上的一個動點,連接AC,過D點作DH⊥AC于H.連接BH,在點C移動的過程中,BH的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;
(3)點P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線 y=ax2+bx+1 經(jīng)過 A(1,0)、B(-1,3)兩點.
(1)求 a,b 的值;
(2)以線段 AB 為邊作正方形 ABB′A′,能否將已知拋物線平移,使其經(jīng)過 A′、B′兩點?若能,求出平移后經(jīng)過 A′、B′兩點的拋物線的解析式;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉(zhuǎn)45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.
求證:(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從A、B兩地同時出發(fā),相向而行,勻速前往B地、A地,兩人相遇時停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時間x(min) 之間的函數(shù)關(guān)系如圖所示.有下列說法: ①A、B之間的距離為1200m;②甲行走的速度是乙的1.5倍;③;④.以上結(jié)論正確的有( )
A.①④B.①②③C.①③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com