如圖,在平面直角坐標系xoy中,直線AP交x軸于點P(p,0),交y軸于點A(0,a),且a、b滿足
a+3
+(p+1)2=0

(1)求直線AP的解析式;
(2)如圖1,點P關于y軸的對稱點為Q,R(0,2),點S在直線AQ上,且SR=SA,求直線RS的解析式和點S的坐標;
(3)如圖2,點B(-2,b)為直線AP上一點,以AB為斜邊作等腰直角三角形ABC,點C在第一象限,D為線段OP上一動點,連接DC,以DC為直角邊,點D為直角頂點作等腰三角形DCE,EF⊥x軸,F(xiàn)為垂足,下列結(jié)論:①2DP+EF的值不變;②
AO-EF
2DP
的值不變;其中只有一個結(jié)論正確,請你選擇出正確的結(jié)論,并求出其定值.
(1)根據(jù)題意得,a+3=0,p+1=0,
解得a=-3,p=-1,
∴點A、P的坐標分別為A(0,-3)、P(-1,0),
設直線AP的解析式為y=mx+n,
n=-3
-m+n=0
,
解得
m=-3
n=-3
,
∴直線AP的解析式為y=-3x-3;

(2)根據(jù)題意,點Q的坐標為(1,0),
設直線AQ的解析式為y=kx+c,
c=-3
k+c=0
,
解得
k=3
c=-3
,
∴直線AQ的解析式為y=3x-3,
設點S的坐標為(x,3x-3),
則SR=
(x-0)2+(3x-3-2)2
=
x2+(3x-5)2

SA=
(0-x)2+(-3-3x+3)2
=
x2+9x2
,
∵SR=SA,
x2+(3x-5)2
=
x2+9x2
,
解得x=
5
6

∴3x-3=3×
5
6
-3=-
1
2
,
∴點S的坐標為S(
5
6
,-
1
2
),
設直線RS的解析式為y=ex+f,
f=2
5
6
e+f=-
1
2

解得
e=-3
f=2
,
∴直線RS的解析式為y=-3x+2;

(3)∵點B(-2,b),
∴點P為AB的中點,
連接PC,過點C作CG⊥x軸于點G,
∵△ABC是等腰直角三角形,
∴PC=PA=
1
2
AB,PC⊥AP,
∴∠CPG+∠APO=90°,∠APO+∠PAO=90°,
∴∠CPG=∠PAO,
在△APO與△PCG中,
∠CPG=∠PAO
∠AOP=∠PGC=90°
PC=AP
,
∴△APO≌△PCG(AAS),
∴PG=AO=3,CG=PO,
∵△DCE是等腰直角三角形,
∴CD=DE,∠CDG+∠EDF=90°,
又∵EF⊥x軸,
∴∠DEF+∠EDF=90°,
∴∠CDG=∠DEF,
在△CDG與△EDF中,
∠CDG=∠DEF
∠EFD=∠CGD=90°
CD=DE
,
∴△CDG≌△EDF(AAS),
∴DG=EF,
∴DP=PG-DG=3-EF,
①2DP+EF=2(3-EF)+EF=6-EF,
∴2DP+EF的值隨點P的變化而變化,不是定值,
AO-EF
2DP
=
3-EF
2(3-EF)
=
1
2
,
AO-EF
2DP
的值與點D的變化無關,是定值
1
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線OQ的函數(shù)解析式為y=x.
下表是直線a的函數(shù)關系中自變量x與函數(shù)y的部分對應值.
x-1123
y8420
設直線a與x軸交點為B,與直線OQ交點為C,動點P(m,0)(0<m<3)在OB上移動,過點P作直線l與x軸垂直.
(1)根據(jù)表所提供的信息,請在直線OQ所在的平面直角坐標系中畫出直線a的圖象,并說明點(10,-10)不在直線a的圖象上;
(2)求點C的坐標;
(3)設△OBC中位于直線l左側(cè)部分的面積為S,寫出S與m之間的函數(shù)關系式;
(4)試問是否存在點P,使過點P且垂直于x軸的直線l平分△OBC的面積?若有,求出點P坐標;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在如圖所示的平面直角坐標系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點A(1,3),且點B坐標為(0,2),直線AB交x軸負半軸于點C,直線AD交x軸正半軸于點D.
(1)求直線AB的函數(shù)解析式;
(2)根據(jù)圖象直接回答,不等式k1x+b1<k2x+b2的解集;
(3)若△ACD的面積為9,求直線AD的函數(shù)解析式;
(4)若點M為x軸一動點,當點M在什么位置時,使AM+BM的值最。壳蟪龃藭r點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,函數(shù)y=kx+b的圖象經(jīng)過點(-1,2)與(2,-1),當函數(shù)值y>-1時,自變量x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)畫直線y=-2x+7的圖象;
(2)求這直線與x軸的交點坐標A,與y軸的交點坐標B;
(3)若O是原點,求△AOB的面積;
(4)利用圖象求二元一次方程2x+y=7的正整數(shù)解.并把方程的解所對應的點在圖象上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示是松原向北京打長途電話所需付的電話費y(元)與通話時間t(分)之間的函數(shù)關系圖象.根據(jù)圖象填空:
(1)通話2分鐘,需付電話費______元.
(2)通話5分鐘,需付電話費______元.
(3)如果通話10分鐘,需付電話費______元.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數(shù)關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B、C兩點的坐標及圖2中OF的長;
(3)若OM是∠AOB的角平分線,且點G與點H分別是線段AO與射線OM上的兩個動點,直接寫出HG+AH的最小值,請在圖3中畫出示意圖并簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角坐標系中,有一半徑為
2
的動圓⊙M,其圓心M從點(3,6)出發(fā)以每秒0.5個單位長度的速度沿y軸方向向下運動,當⊙M與直線y=x相切時,則⊙M運動的時間為______秒.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

聲音在空氣中傳播的速度y(米/秒)(簡稱音速)是氣溫x(℃)(0≤x≤30)的一次函數(shù).下表列出了一組不同氣溫時的音速:
氣溫x(℃)5101520
音速y(米/秒)334337340343
則y與x之間的函數(shù)關系式為______.

查看答案和解析>>

同步練習冊答案