【題目】某專賣店有A、B兩種商品,已知在打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元.A、B兩種商品打相同折以后,某人買500件A商品和450件B商品一共比不打折少花1960元,請(qǐng)問(wèn)A、B兩種商品打折前各多少錢?打了多少折?
【答案】A商品打折前的單價(jià)為16元/件,B商品打折前的單價(jià)為4元/件,打了8折.
【解析】
設(shè)A商品打折前的單價(jià)為x元/件,B商品打折前的單價(jià)為y元/件,根據(jù)“買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元”,即可得出關(guān)于x,y的二元一次方程組,解之即可求出x,y的值,再利用折扣率=現(xiàn)價(jià)÷原價(jià)×10,即可求出結(jié)論.
設(shè)A商品打折前的單價(jià)為x元/件,B商品打折前的單價(jià)為y元/件,
依題意,得:,
解得:,
∴.
答:A商品打折前的單價(jià)為16元/件,B商品打折前的單價(jià)為4元/件,打了8折.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)試說(shuō)明△COD是等邊三角形;
(2)當(dāng)a=150°時(shí),OB=3,OC=4,試求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),直線交拋物線于點(diǎn),并且,,.
(1)求拋物線的解析式;
(2)已知點(diǎn)為拋物線上一動(dòng)點(diǎn),且在第二象限,順次連接點(diǎn)、、、,求四邊形面積的最大值;
(3)在(2)中四邊形面積最大的條件下,過(guò)點(diǎn)作直線平行于軸,在這條直線上是否存在一個(gè)以點(diǎn)為圓心,為半徑且與直線相切的圓?若存在,求出圓心的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知為的直徑,,點(diǎn)和點(diǎn)是上關(guān)于直線對(duì)稱的兩個(gè)點(diǎn),連接、,且,直線和直線相交于點(diǎn),過(guò)點(diǎn)作直線與線段的延長(zhǎng)線相交于點(diǎn),與直線相交于點(diǎn),且.
(1)求證:直線為的切線;
(2)若點(diǎn)為線段上一點(diǎn),連接,滿足,
①求證:;
②求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是線段AH上一點(diǎn),AH=3,以點(diǎn)O為圓心,OA的長(zhǎng)為半徑作⊙O,過(guò)點(diǎn)H作AH的垂線交⊙O于C,N兩點(diǎn),點(diǎn)B在線段CN的延長(zhǎng)線上,連接AB交⊙O于點(diǎn)M,以AB,BC為邊作ABCD.
(1)求證:AD是⊙O的切線;
(2)若OHAH,求四邊形AHCD與⊙O重疊部分的面積;
(3)若NHAH,BN,連接MN,求OH和MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線ABy=kx﹣1分別交x軸、y軸于點(diǎn)A、B,直線CDy=x+2分別交x軸、y軸于點(diǎn)D、C,且直線AB、CD交于點(diǎn)E,E的橫坐標(biāo)為﹣6.
(1)如圖①,求直線AB的解析式;
(2)如圖②,點(diǎn)P為直線BA第一象限上一點(diǎn),過(guò)P作y軸的平行線交直線CD于G,交x軸于F,在線段PG取點(diǎn)N,在線段AF上取點(diǎn)Q,使GN=QF,在DG上取點(diǎn)M,連接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的條件下,點(diǎn)E關(guān)于x軸對(duì)稱點(diǎn)為T,連接MP、TQ,若MP∥TQ,且GN:NP=4:3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y1=﹣x+2和拋物線相交于點(diǎn)A,B.
(1)當(dāng)k=時(shí),求兩函數(shù)圖象的交點(diǎn)坐標(biāo);
(2)二次函數(shù)y2的頂點(diǎn)為P,PA或PB與直線y1=﹣x+2垂直時(shí),求k的值.
(3)當(dāng)﹣4<x<2時(shí),y1>y2,試直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是⊙O的直徑,C點(diǎn)在⊙O上,F是AC的中點(diǎn),OF的延長(zhǎng)線交⊙O于點(diǎn)D,點(diǎn)E在AB的延長(zhǎng)線上,∠A=∠BCE.
(1)求證:CE是⊙O的切線;
(2)若BC=BE,判定四邊形OBCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)“割圓術(shù)”,奠定了中國(guó)圓周率計(jì)算在世界上的領(lǐng)先地位.劉徽提出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體,而無(wú)所失矣”,由此求得圓周率的近似值.如圖,設(shè)半徑為的圓內(nèi)接正邊形的周長(zhǎng)為,圓的直徑為,當(dāng)時(shí),,則當(dāng)時(shí),______.(結(jié)果精確到0.01,參考數(shù)據(jù):,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com