拋物線與x軸交與兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)y=-x2-2x+3;(2)Q(-1,2)

試題分析:(1)由題意把A(1,0)B(-3,0)代入到拋物線中即可求得結(jié)果;
(2)過(guò)B、C作直線BC與對(duì)稱軸x=-1的交點(diǎn)就是Q點(diǎn),設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得直線BC的解析式,令XQ=-1,得YQ=2,即可求得結(jié)果.
(1)把A(1,0)B(-3,0)代入到拋物線中得
,解得
∴拋物線的解析式為y=-x2-2x+3;
(2)存在。
過(guò)B、C作直線BC與對(duì)稱軸x=-1的交點(diǎn)就是Q點(diǎn),
設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得
,解得
∴y="x+3"
令XQ=-1,得YQ=2   
∴Q(-1,2).
點(diǎn)評(píng):二次函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線yx2bxc經(jīng)過(guò)矩形ABCO的頂點(diǎn)B、C,DBC的中點(diǎn),直線ADy軸交于E點(diǎn),點(diǎn)F在直線AD上且橫坐標(biāo)為6.

(1)求該拋物線解析式并判斷F點(diǎn)是否在該拋物線上;
(2)如圖,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);
同時(shí),動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)E運(yùn)動(dòng).過(guò)點(diǎn)PPHOA,垂足為H,連接MP,MH.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
①問(wèn)EPPHHF是否有最小值,如果有,求出t的值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
②若△PMH是等腰三角形,求出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于AB兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為-8.

(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)Px軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PEAB于點(diǎn)E
①設(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)FG恰好落在y軸上時(shí),求出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

九年級(jí)數(shù)學(xué)課本上,用“描點(diǎn)法”畫二次函數(shù)的圖像時(shí),列出了如下的表格:
X
 
0
1
2
3
4
 

 
3
0
–1
0
3
 
那么該二次函數(shù)在= 5時(shí),y =      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某隧道橫截面的上下輪廓線分別由拋物線對(duì)稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

(1) 直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2) 求出這條拋物線的函數(shù)解析式;
(3) 若要搭建一個(gè)矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個(gè)“支撐架”總長(zhǎng)的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中0A=2,0B=4,將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至△OCD,若已知拋物線過(guò)點(diǎn)A、D、B.
  
(1)求此拋物線的解析式;
(2)連結(jié)DB,將△COD沿射線DB平移,速度為每秒個(gè)單位.
①經(jīng)過(guò)多少秒O點(diǎn)平移后的O′點(diǎn)落在線段AB上?
②設(shè)DO的中點(diǎn)為M,在平移的過(guò)程中,點(diǎn)M、A、B能否構(gòu)成等腰三角形?若能,求出構(gòu)成等腰三角形時(shí)M點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)A(x1,y1),B(x2,y2),在拋物線上,且x1<x2<-2,則y1    y2(填“>”或“=”或“<”)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù) y=ax2-ax+1 (a≠0)的圖象與x軸有兩個(gè)交點(diǎn),其中一個(gè)交點(diǎn)為(,0),那么另一個(gè)交點(diǎn)坐標(biāo)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過(guò)點(diǎn)(―1,―1),設(shè)線段AB的長(zhǎng)為d,當(dāng)p為何值時(shí),d2取得最小值并求出該最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案