【題目】在矩形中,已知,在邊上取點,使,連結(jié),過點,與邊或其延長線交于點

猜想:如圖,當(dāng)點在邊上時,線段的大小關(guān)系為

探究:如圖,當(dāng)點在邊的延長線上時,與邊交于點.判斷線段的大小關(guān)系,并加以證明.

應(yīng)用:如圖,若利用探究得到的結(jié)論,求線段的長.

【答案】猜想:AF=DE;探究:AF=DE;應(yīng)用:BG=

【解析】

試題分析:先猜想,再根據(jù)垂直的意義和矩形的性質(zhì)證明△AEF≌△DCE即可說明AF=DE;然后可根據(jù)圖形結(jié)合題意可求得AF=3,BF=1,然后用平行線的性質(zhì),證明△FBG∽△FAE,再根據(jù)相似三角形的對應(yīng)邊成比例求得結(jié)果.

試題解析:猜想:AF=DE

探究:AF=DE

證明:∵EF⊥CE

∴∠CEF=90°

∴∠1+∠2=90°

四邊形ABCD為矩形

∴∠A=∠D=90°,AB=CD

∴∠2+∠3=90°

∴∠1=∠3

∵AE=AB,

∴AE=DC

∴△AEF≌△DCE

∴AF=DE

應(yīng)用:∵AF=DE=AD-AE=5-2=3

∴BF=AF-AB=3-2=1

在矩形ABCD中,AD∥BC

∴△FBG∽△FAE

∴BG=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進(jìn)價分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB6,AMBN是⊙O的兩條切線,點DAM上一點,連接OD,作BEOD交⊙O于點E,連接DE并延長交BN于點.

1)求證:DC是⊙O的切線;

2)設(shè)ADx,BCy.求yx的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)

3)若AD1,連接AE并延長交BCF,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線y=﹣(x+1)2+4與x軸交于點A、B,與y軸交于點C.

(1)寫出拋物線頂點D的坐標(biāo)   ;

(2)點D1是點D關(guān)于y軸的對稱點,判斷點D1是否在直線AC上,并說明理由;

(3)若點E是拋物線上的點,且在直線AC的上方,過點E作EF⊥x軸交線段AC于點F,求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQBD交BE于點Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,過AB的中點EECOA,垂足為C,過點B作直線BDCE的延長線于點D,使得DB=DE.

(1)求證:BD是⊙O的切線;

(2)若AB=12,DB=5,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個口袋中有4個完全相同的小球,把它們分別標(biāo)上數(shù)字﹣1,0,12,隨機的摸出一個小球記錄數(shù)字然后放回,在隨機的摸出一個小球記錄數(shù)字.求下列事件的概率:

1)兩次都是正數(shù)的概率PA);

2)兩次的數(shù)字和等于0的概率PB).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,過點BO的切線BM,弦CD//BM,交AB于點F,且,連接AC,AD,延長ADBM于點E.

l)求證:△ACD是等邊三角形;

2)連接OE,若DE2,求OE的長.

查看答案和解析>>

同步練習(xí)冊答案