【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.
【答案】
(1)證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵M(jìn)N∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD
(2)解:四邊形BECD是菱形,
理由是:∵D為AB中點(diǎn),
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點(diǎn),
∴CD=BD,
∴四邊形BECD是菱形
(3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點(diǎn),
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴菱形BECD是正方形,
即當(dāng)∠A=45°時(shí),四邊形BECD是正方形
【解析】(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安徽省2010年末森林面積為3804.2千公頃,用科學(xué)記數(shù)法表示3804.2千正確的是( 。
A.3804.2×103B.380.42×104C.3.8042×106D.3.8042×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】細(xì)心算一算:
(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);
(2)5.7﹣4.2﹣8.4﹣2.3+1;
(3) ;
(4) ;
(5)(﹣7.03)×40.16+(﹣0.16)×(﹣7.03)+7.03×(﹣60).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘面角是指時(shí)鐘的時(shí)針與分針?biāo)傻慕?如圖,在鐘面上,點(diǎn)為鐘面的圓心,圖中的圓我們稱之為鐘面圓. 為便于研究,我們規(guī)定: 鐘面圓的半徑表示時(shí)針,半徑表示分針,它們所成的鐘面角為∠;本題中所提到的角都不小于0°,且不大于180°;本題中所指的時(shí)刻都介于0點(diǎn)整到12點(diǎn)整之間.
(1)時(shí)針每分鐘轉(zhuǎn)動(dòng)的角度為 °,分針每分鐘轉(zhuǎn)動(dòng)的角度為 °;
(2)8點(diǎn)整,鐘面角∠= °,鐘面角與此相等的整點(diǎn)還有: 點(diǎn);
(3)如圖,設(shè)半徑指向12點(diǎn)方向,在圖中畫出6點(diǎn)15分時(shí)半徑、的大概位置,并求出此時(shí)∠的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從開始,連續(xù)的奇數(shù)相加,它們和的情況如表所示:
加數(shù)的個(gè)數(shù) | 連續(xù)奇數(shù)的和 |
()當(dāng)
()用含的代數(shù)式表示個(gè)連續(xù)奇數(shù)之和的公式, __________.
用含的代數(shù)式表示從開始的第個(gè)連續(xù)奇數(shù)是__________.
()根據(jù)規(guī)律計(jì)算.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com