【題目】如圖,ABy軸,垂足為B,∠BAO30°,將△ABO繞點A逆時針旋轉到△AB1O1的位置,使點B的對應點B1落在直線y=-x上,再將△AB1O1繞點B1逆時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y=-x上,依次進行下去…若點B的坐標是(0,1),則點O2020的縱坐標為__________;

【答案】

【解析】

觀察圖象可知,O2、 O4 O6、...O2020在直線y=-x上,OO2的周長=1+ +2),OO4=21+ +2),OO6=31+ +2),依次類推OO2020

=10101+ +2),再根據(jù)點O2020的縱坐標是OO2020的一半,由此即可解決問題.

解:觀察圖象可知,O2、 O4、 O6、...O2020在直線y=-x上,

∵∠BAO30°,ABy軸,點B的坐標是(01),

OO2的周長=1+ +2),

OO4=21+ +2),OO6=31+ +2),依次類推OO2020=10101+ +2),

∵直線y=-xx軸負半軸的交角為30°

∴點O2020的縱坐標= O O2020=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC繞直角頂點C順時針旋轉90°,得到△A1B1C,連接AA1,若∠AA1B1=15°,則∠B的度數(shù)是( )

A. 75° B. 60° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個安裝有進出水管的30升容器,水管單位時間內進出的水量是一定的,設從

某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,得到水量y(升)

與時間x(分)之間的函數(shù)關系如圖所示.根據(jù)圖象信息給出下列說法:

①每分鐘進水5升;②當4≤x≤12時,容器中水量在減少;

③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;

④若從一開始進出水管同時打開需要24分鐘可以將容器灌滿.

以上說法中正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程(米)與各自所用時間(秒)之間的函數(shù)圖像分別為線段和折線,則下列說法不正確的是(

A.甲的速度保持不變B.乙的平均速度比甲的平均速度大

C.在起跑后第180秒時,兩人不相遇D.在起跑后第50秒時,乙在甲的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,內一點,且,,,則等于(

A. 105° B. 120° C. 135° D. 150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外興趣小組活動時,老師提出了如下問題:

如圖,在中,若,求邊上的中線的取值范圍.

小明在組內經過合作交流,得到了如下的解決方法:延長,使得,再連接(或將繞點逆時針旋轉得到),把、集中在中,利用三角形的三邊關系可得,則

[感悟]解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.

解決問題:受到的啟發(fā),請你證明下列命題:如圖,在中,邊上的中點,,于點,于點,連接.求證:,若,探索線段、之間的等量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以為直徑的于點,過點,在上取一點,使,連接,對于下列結論:①;;③弧;的切線,結論一定正確的是(

A. ②③ B. ②④ C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①ABC中,AB=AC,點M、N分別是AB、AC上的點,且AM=AN.連接MN、CM、BN,點D、E、F、G分別是BC、MN、BN、CM的中點,連接E、F、D、G.

(l)判斷四邊形EFDG的形狀是   (不必證明);

(2)現(xiàn)將AMN繞點A旋轉一定的角度,其他條件不變(如圖②),四邊形EFDG的形狀是否發(fā)生變化?證明你的結論;

(3)如圖②,在(2)的情況下,請將ABC在原有的條件下添加一個條件,使四邊形EFDG是正方形.請寫出你添加的條件,并在添加條件的基礎上證明四邊形EFDG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網(wǎng)格中,每個小正方形的邊長都為1,畫圖請加粗加黑.

(1)圖中格點的面積為______.

(2)在圖中建立適當?shù)钠矫嬷苯亲鴺讼,使點,.

(3)畫出關于軸對稱的圖形.

查看答案和解析>>

同步練習冊答案