【題目】在直角坐標(biāo)系中,直線l1經(jīng)過(guò)點(diǎn)(1,﹣3)和(3,1),直線l2經(jīng)過(guò)(1,0),且與直線l1交于點(diǎn)A(2,a).
(1)求a的值;
(2)A(2,a)可看成怎樣的二元一次方程組的解?
(3)設(shè)直線l1與y軸交于點(diǎn)B,直線l2與y軸交于點(diǎn)C,求△ABC的面積.
【答案】
(1)解:設(shè)直線l1的解析式為y=kx+b,
把(1,﹣3)和(3,1)代入,
得 ,解得: ,
則直線l1的解析式為:y=2x﹣5,
把A(2,a)代入y=2x﹣5,得:a=2×2﹣5=﹣1
(2)解:設(shè)l2的解析式為y=mx+n,
把A(2,﹣1)、(1,0)代入,
得 ,解得 ,
所以L2的解析式為y=﹣x+1,
所以點(diǎn)A(2,a)可以看作是二元一次方程組 的解
(3)解:把x=0代入y=2x﹣5,得y=﹣5,
把x=0代入y=﹣x+1,得y=1,
∴點(diǎn)B的坐標(biāo)為(0,﹣5),點(diǎn)C的坐標(biāo)為(0,1),
∴BC=1﹣(﹣5)=6.
又∵A點(diǎn)坐標(biāo)為(2,﹣1),
∴S△ABC= ×6×2=6
【解析】(1)首先利用待定系數(shù)法求得直線l1的解析式,然后直接把A點(diǎn)坐標(biāo)代入可求出a的值;(2)利用待定系數(shù)法確定l2的解析式,由于A(2,a)是l1與l2的交點(diǎn),所以點(diǎn)A(2,a)可以看作是二元一次方程組 的解;(3)先確定B、C兩點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列證明過(guò)程,求證:三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半.
已知:________
求證:________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過(guò)點(diǎn)A作⊙O的切線AE交CD的延長(zhǎng)線于點(diǎn)E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)點(diǎn)在數(shù)上距原點(diǎn)3個(gè)單位長(zhǎng)度開始,先向右移動(dòng)4個(gè)單位長(zhǎng)度,再向左移動(dòng)1個(gè)單位長(zhǎng)度,這時(shí)它表示的數(shù)是( )
A.6
B.0
C.﹣6
D.0或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某化工廠與A,B兩地有公路和鐵路相連,這家工廠從A地購(gòu)買一批每噸1 000元的原料運(yùn)回工廠,制成每噸8 000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價(jià)為1.5元/(噸千米),鐵路運(yùn)價(jià)為1.2元/(噸千米),這兩次運(yùn)輸共支出公路運(yùn)費(fèi)15 000元,鐵路運(yùn)費(fèi)97200元.
(1)求化工廠從A地購(gòu)買這批原料及利用這批原料生產(chǎn)的產(chǎn)品各多少噸?
(2)計(jì)算這批產(chǎn)品的銷售款比原料費(fèi)和運(yùn)輸費(fèi)的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查6個(gè)人中2個(gè)人生肖相同的概率,進(jìn)行有放回地摸球試驗(yàn),則( )
A. 用12個(gè)球每摸6次為一次試驗(yàn),看是否有2次相同
B. 用12個(gè)球每摸12次為一次試驗(yàn),看是否有2次相同
C. 用6個(gè)球每摸12次為一次試驗(yàn),看是否有2次相同
D. 用6個(gè)球每摸6次為一次試驗(yàn),看是否有2次相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將平行四邊形ABCD旋轉(zhuǎn)到平行四邊形A′B′C′D′的位置,下列結(jié)論錯(cuò)誤的是( )
A. AB=A′B′ B. AB∥A′B′ C. ∠A=∠A′ D. △ABC≌△A′B′C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分∠ABC,P是BD上一點(diǎn),過(guò)點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com