(2008•紹興)學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷:①
;②
;③
.并對②,③的判斷,選擇一個(gè)給出證明.
分析:(1)根據(jù)BM=NC,∠ABM=∠BCN,AB=BC,(ASA)判定△ABM≌△BCN,所以∠BAM=∠CBN,則∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60度;
(2)②同樣還是根據(jù)條件判定△ACM≌△BAN,得到∠AMC=∠BNA,所以∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°-60°=120°,即∠BQM=60°;③同上,證明Rt△ABM≌Rt△BCN,得到∠AMB=∠BNC所以,∠QBM+∠QMB=90°,∠BQM=90°,即∠BQM≠60°
解答:證明:(1)∵BM=NC,∠ABM=∠BCN,AB=BC,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.

(2)①是;②是;③否.
②的證明:如圖,
∵∠ACM=∠BAN=120°,CM=AN,AC=AB,
∴△ACM≌△BAN,
∴∠AMC=∠BNA,
∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°-60°=120°,
∴∠BQM=60°.
③的證明:如圖,
∵BM=CN,AB=BC,
∴Rt△ABM≌Rt△BCN,
∴∠AMB=∠BNC.
又∠NBM+∠BNC=90°,
∴∠QBM+∠QMB=90°,
∴∠BQM=90°,即∠BQM≠60°.
點(diǎn)評:主要考查了等邊三角形的性質(zhì)和全等三角形的判定及性質(zhì)的運(yùn)用.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2008•紹興)附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個(gè)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省名校中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

(2008•紹興)附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個(gè)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷28(夾灶初中 邵林明)(解析版) 題型:解答題

(2008•紹興)在城關(guān)中學(xué)開展的“我為四川地震災(zāi)區(qū)獻(xiàn)愛心”捐書活動(dòng)中,校團(tuán)委為了了解九年級同學(xué)的捐書情況,用簡單的隨機(jī)抽樣方法從九年級的10個(gè)班中抽取50名同學(xué),對這50名同學(xué)所捐的書進(jìn)行分類統(tǒng)計(jì)后,繪制了如下統(tǒng)計(jì)表:
 種類文學(xué)類 科普類 學(xué)輔類  體育類 其它 合計(jì)
 冊數(shù) 120 180 140 80 40 560
(1)在下圖中,補(bǔ)全這50名同學(xué)捐書情況的頻數(shù)分布直方圖;
(2)若九年級共有475名同學(xué),請你估計(jì)九年級同學(xué)的捐書總冊數(shù)及學(xué)輔類書的冊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•紹興)附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個(gè)給出證明.

查看答案和解析>>

同步練習(xí)冊答案