【題目】一包洽洽瓜子售價8元,商家為了促銷,顧客每買一包洽洽瓜子獲一張獎券,每4張獎券可兌換一包洽洽瓜子,則每張獎券相當于______元.
科目:初中數學 來源: 題型:
【題目】已知:如圖(1),直線AB∥CD,EF分別交AB、CD于E、F兩點,∠BEF、∠DFE的平分線相交于點K.(1)求∠EKF的度數.(計算過程不準用三角形內角和)(2)如圖(2),∠BEK、∠DFK的平分線相交于點K1,問∠K1與∠K的度數是否存在某種特定的等量關系?寫出結論并證明.(3)在圖2中作∠BEK1、∠DFK1的平分線相交于點K2,作∠BEK2、∠DFK2的平分線相交于點K3,依此類推,作∠BEKn、∠DFKn的平分線相交于點Kn+1,請用含的n式子表示∠Kn+1的度數.(直接寫出答案,不必寫解答過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°
(1)利用尺規(guī)作∠ABC 的平分線,交AC 于點O,再以O 為圓心,OC 的長為半徑作⊙O(保留作圖痕跡,不寫作法);
(2)在你所作的圖中,①判斷AB 與⊙O 的位置關系,并證明你的結論;②若AC=12,tan∠OBC=,求⊙O 的半徑。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點P是RtABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F。(1)如圖1,當點P 為AB 的中點時,連接AF,BE。求證:四邊形AEBF是平行四邊形;(2)如圖2,當點P 不是AB的中點,取AB的中點Q,連接EQ,FQ 。試判斷△QEF 的形狀,并加以證明。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)先化簡,再求值:2+(+)( -2)-(-,其中=-3, =.
(2)已知ab=-3,a+b=2.求下列各式的值:
①a2+b2;
②a3b+2a2b2 +ab3;
③a-b.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】寫出下列命題的條件與結論.
(1)兩條直線平行,同位角相等;
(2)同角或等角的補角相等;
(3)兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知某品牌的飲料有大瓶和小瓶裝之分,某超市花了3800元購進一批該品牌的飲料共1000瓶,其中,大瓶和小瓶飲料的進價及售價如表所示.
(1)問:該超市購進大瓶和小瓶飲料各多少瓶?
(2)當大瓶飲料售出了200瓶,小瓶飲料售出了100瓶后,商家決定將剩下的小瓶飲料的售價降低0.5元銷售,并把其中一定數量的小瓶飲料作為贈品,在顧客一次購買大瓶飲料時,每滿2瓶就送1瓶飲料,送完即止.請問:超市要使這批飲料售完后獲得的利潤不低于1250元,那么小瓶飲料作為贈品最多只能送出多少瓶?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com