【題目】已知反比例函數(shù)的圖像與的圖像交于點A、B,A點的坐標(biāo)是(,-2)
(1)求反比例函數(shù)解析式;
(2)求點B的坐標(biāo);
(3)在y軸上是否存在點C,使得△ABC的面積是6,若存在,求點C的坐標(biāo);若不存在,請說明理由。
【答案】(1);(2)(-1,2);(3)(0,6)或(0,-6)
【解析】
(1)將點A坐標(biāo)代入中,求a的值,然后用待定系數(shù)法求反比例函數(shù)解析式;(2)根據(jù)正比例函數(shù)和反比例函數(shù)關(guān)于原點對稱的性質(zhì)求點B的坐標(biāo);(3)設(shè)點C的坐標(biāo)為(0,y),數(shù)形結(jié)合,根據(jù)三角形面積公式列方程求解.
解:(1)把A點的坐標(biāo)(,-2)代入中
解得:a=1
∴A點的坐標(biāo)是(1,-2)
設(shè)反比例函數(shù)解析式為:
將A點的坐標(biāo)(1,-2)代入中
∴反比例函數(shù)的解析式為:
(2)∵正比例函數(shù)和反比例函數(shù)關(guān)于原點對稱且它們的圖像交于點A、B
∴點A、B關(guān)于原點對稱
∴B點坐標(biāo)為:(-1,2)
(3)存在,設(shè)點C的坐標(biāo)為(0,y),連接AC,BC
∴
∴點C的坐標(biāo)為(0,6)或(0,-6)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點,交軸于點,頂點為,其對稱軸交軸于點.直線經(jīng)過、兩點,交拋物線的對稱軸于點,其中點的橫坐標(biāo)為.
(1)求拋物線的表達(dá)式;
(2)連接,求的周長;
(3)若是拋物線位于直線的下方且在其對稱軸左側(cè)上的一點,當(dāng)四邊形的面積最大時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc<0;②2a﹣b<0;③b2>(a+c)2;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y= ;
(4)實際上通過計算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲和乙一起做游戲,下列游戲規(guī)則對雙方公平的是( 。
A. 在一個裝有2個紅球和3個白球(每個球除顏色外都相同)的袋中任意摸出一球,摸到紅球甲獲勝,摸到白球乙獲勝;
B. 從標(biāo)有號數(shù)1到100的100張卡片中,隨意抽取一張,抽到號數(shù)為奇數(shù)甲獲勝,否則乙獲勝;
C. 任意擲一枚質(zhì)地均勻的骰子,擲出的點數(shù)小于4則甲獲勝,擲出的點數(shù)大于4則乙獲勝;
D. 讓小球在如圖所示的地板上自由地滾動,并隨機(jī)地停在某塊方塊上,若小球停在黑色區(qū)域則甲獲勝,若停在白色區(qū)域則乙獲勝
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機(jī)取出一個小球
(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果
(2)請直接寫出事件“取出至少一個紅球”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
(1)實踐操作:中,,為直線上一點,過點作,與直線相交于點,如圖①,圖②,圖③所示,則的形狀為______.
(2)問題解決:等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識結(jié)合在一起解決問題.如圖④,中,,為上一點,為延長線上一點,且,交于,求證:.
(3)拓展與應(yīng)用,在(2)的條件下,如圖⑤,過點作的垂線,垂足為,若,則的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com