【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
【答案】(1) (2)證明見解析;(3)四邊形ABNE是正方形.理由見解析.
【解析】
(1)由等腰直角三角形的性質得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,證出BF=CD,由SAS證明△ABF≌△ACD,即可得出AD=AF;
(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,證出∠EAF=∠BAD,由SAS證明△AEF≌△ABD,得出對應邊相等即可;
(3)由全等三角形的性質得出得出∠AEF=∠ABD=90°,證出四邊形ABNE是矩形,由AE=AB,即可得出四邊形ABNE是正方形.
(1)證明:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABF=135°.
∵∠BCD=90°,
∴∠ACD=135°.
∴∠ABF=∠ACD.
∵CB=CD,CB=BF,
∴BF=CD.
在△ABF和△ACD中,
∴△ABF≌△ACD,
∴AD=AF;
(2)證明:由(1)知AF=AD,△ABF≌△ACD,
∴∠FAB=∠DAC.
∵∠BAC=90°,
∴∠EAB=∠BAC=90°,
∴∠EAF=∠BAD.
∵AB=AC,AC=AE,
∴AB=AE.
在△AEF和△ABD中,
∴△AEF≌△ABD.
∴BD=EF.
(3)解:四邊形ABNE是正方形.理由:
∵CD=CB,∠BCD=90°,
∴∠CBD=45°.
∵∠ABC=45°,
∴∠ABD=90°.
∴∠ABN=90°.
由(2)知∠EAB=90°,△AEF≌△ABD,
∴∠AEF=∠ABD=90°.
∴四邊形ABNE是矩形.
又∵AE=AB,
∴矩形ABNE是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】學校的某社團組織了一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分10分,題b、題c滿分均為15分.競賽結果,每個學生至少答對了一題,三題全答對的有2人,答對其中兩道題的有14人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為27,答對題b的人數(shù)與答對題c的人數(shù)之和為20,則這個社團的平均成績是_____分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個,擺放在迎賓大道兩側。已知搭配一個A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個B種造型需甲種花卉5盆,乙種花卉9盆。
(1)某校九年級某班課外活動小組承接了這個園藝造型搭配方案的設計,問符合題意的搭配方案有幾種?請你幫助設計出來;
(2)若搭配一個A種造型的成本是200元,搭配一個B種造型的成本是360元,試說明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結論:
①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF=S△ABC;④EF=AP.上述結論始終正確的有( )
②③
A.①②③④B.①②③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為190元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1770元 |
第二周 | 4臺 | 10臺 | 3060 元 |
(進價、售價均保持不變,利潤=銷售收入一進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若超市準備用不多于5300元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標,若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市救災物資儲備倉庫共存儲了A,B,C三類救災物資,下面的統(tǒng)計圖是三類物資存儲量的不完整統(tǒng)計圖.
(1)求A類物資的存儲量,并將兩個統(tǒng)計表補充完整;
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將A、B兩類物資全部運往某災區(qū).已知甲種貨車最多可裝A類物資10噸和B類物資40噸,乙種貨車最多可裝A、B類物資各20噸,則物資儲備倉庫安排甲、乙兩種貨車有幾種方案?請你幫助設計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過市場調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來兩個月天的日銷量件與時間天的關系如圖所示未來兩個月天該商品每天的價格元件與時間天的函數(shù)關系式為:
根據(jù)以上信息,解決以下問題:
請分別確定和時該產(chǎn)品的日銷量件與時間天之間的函數(shù)關系式;
請預測未來第一月日銷量利潤元的最小值是多少?第二個月日銷量利潤元的最大值是多少?
為創(chuàng)建“兩型社會”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷售,從第二個月開始每銷售一件該產(chǎn)品就補貼a元有了政府補貼以后,第二個月內(nèi)該產(chǎn)品日銷售利潤元隨時間天的增大而增大,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com