【題目】在數(shù)軸上,點(diǎn)A、B表示的數(shù)分別是有理數(shù)a,b.

(1)若點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè),且|a|=|b|,則ab的關(guān)系是   ,用式子表示為   

(2)若a=﹣5,b=1

①分別寫(xiě)出a,b的相反數(shù);

②求|a|﹣|b|的值.

【答案】(1) 互為相反數(shù),a=﹣b;(2) ①5和﹣1 ;②-

【解析】

(1)根據(jù)相反數(shù)的定義可知a、b互為相反數(shù);(2)①根據(jù)相反數(shù)的定義分別寫(xiě)出a、b的相反數(shù)即可;②先計(jì)算a、b+,再將兩數(shù)取絕對(duì)值,最后相減即可.

(1)∵點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè),且|a|=|b|,

ab的關(guān)系是互為相反數(shù),用式子表示為a=﹣b,

故答案為:互為相反數(shù),a=﹣b;

(2)①∵a=﹣5,b=1,

a,b的相反數(shù)分別為:5和﹣1 ;

②當(dāng)a=﹣5,b=1時(shí),

│a│-│b+│=|﹣5+2|﹣|1+1|=2﹣3=﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足 +|b﹣2|=0.

(1)則C點(diǎn)的坐標(biāo)為;A點(diǎn)的坐標(biāo)為
(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(1,2),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問(wèn):是否存在這樣的t,使SODP=SODQ?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由
(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過(guò)程中, 的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述中,不正確的個(gè)數(shù)有( ) ①所有的正數(shù)都是整數(shù)②|a|一定是正數(shù) ③無(wú)限小數(shù)一定是無(wú)理數(shù) ④(﹣2)3沒(méi)有平方根 的平方根是±4
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列三行數(shù)

﹣3,9,﹣27,81,﹣243,……

﹣5,7,﹣29,79,﹣245,……

﹣1,3,﹣9,27,﹣81,……

第①行數(shù)排列律是_____;第②行數(shù)與第①行數(shù)的關(guān)系是_____;第③行數(shù)與第①行數(shù)的關(guān)系是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組測(cè)量校園內(nèi)旗桿的高度,有以下兩種方案:

方案一:小明在地面上直立一根標(biāo)桿,沿著直線后退到點(diǎn),使眼睛、標(biāo)桿的頂點(diǎn)、旗桿的頂點(diǎn)在同一直線上(如圖1).測(cè)量:人與標(biāo)桿的距離=1 m,人與旗桿的距離=16m,人的目高和標(biāo)桿的高度差=0.9m,人的高度=1.6m.

方案二:小聰在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上影長(zhǎng)為21米,留在墻上的影高為2(如圖2).

請(qǐng)你結(jié)合上述兩個(gè)方案,選擇其中的一個(gè)方案求旗桿的高度。我選擇方案 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標(biāo)系中描出各點(diǎn),畫(huà)出△ABC

(2)求△ABC的面積;

(3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EAC上一點(diǎn),連接EB,過(guò)點(diǎn)AAM⊥BE,垂足為M,AMBD于點(diǎn)F

(1)求證:OEOF;

(2)如圖(2),若點(diǎn)EAC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則結(jié)論“OEOF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案