【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動,轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:
(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是;如圖2,當(dāng)a=°時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時(shí),為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關(guān)系,請你幫助他直接寫出這個關(guān)系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個交點(diǎn)時(shí),α的取值范圍是 , 并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)

【答案】
(1) +1;60°
(2)解:設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.

∵O′P=R,

∴R= R+1,

∴R=4+2


(3)
(4)解:如圖5中,當(dāng)半圓與射線AB相切時(shí),之后開始出現(xiàn)兩個交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°故答案為90°<α≤120°;當(dāng)N′落在AB上時(shí),陰影部分面積最大,所以S═ ? m? m= m2
【解析】解:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長即可.

在Rt△MFO′中,∵∠MO F=30°,MO′=2,

∴O′F=O′Mcos30°= ,O′E= +1,

∴點(diǎn)O′到AB的距離為 +1.

如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,

∴AE=O′F=2,

∵AM=1,

∴EM=1,

在Rt△O′EM中,sinα= =

∴α=60°

故答案為 +1,60°.(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.

在Rt△O′QM中,O′Q=Rcosα,QP=m,

∵O′P=R,

∴Rcosα+m=R,

∴cosα=

故答案為

(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα= = ,推出α=60°.(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題.(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題、(4)當(dāng)半圓與射線AB相切時(shí),之后開始出現(xiàn)兩個交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°.當(dāng)N′落在AB上時(shí),陰影部分面積最大,求出此時(shí)的面積即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,AB=AC,BAC=90°,1=2,CEBDBD的延長線于點(diǎn)E.求證:BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為3的正方形的對角線長為a.下列關(guān)于a的四種說法: ①a是無理數(shù);
②a可以用數(shù)軸上的一個點(diǎn)來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫出函數(shù)y=2x+4的圖像,并結(jié)合圖像解決下列問題:

(1)寫出方程2x+4=0的解;

(2)當(dāng)﹣4≤y時(shí),求相應(yīng)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2


(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,CEAB于點(diǎn)F,若∠E=20°,C=45°,則∠A的度數(shù)為( 。

A. B. 15° C. 25° D. 35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A,點(diǎn)C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P從點(diǎn)O出發(fā),以每秒2個單位長度的速度沿OCB方向運(yùn)動,到點(diǎn)B停止.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t(秒).

1)點(diǎn)A的坐標(biāo)為    ;

2)當(dāng)t=1秒時(shí),點(diǎn)P的坐標(biāo)    ;

3)當(dāng)點(diǎn)POC上運(yùn)動,請直接寫出點(diǎn)P的坐標(biāo)(用含有t的式子表示);

4)在移動過程中,當(dāng)點(diǎn)Py軸的距離為1個單位長度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦迎省運(yùn)學(xué)生書畫展覽,現(xiàn)要在長方形展廳中劃出個形狀、大小完全一樣的小長方形(中陰影部分)區(qū)城擺放展覽作品.

1)如圖1,若大長方形的長和寬分別為米和米,求小長方形的長和寬;

2)如圖2,若大長方形的長和寬分別為,求出一個小長方形與一個大長方形周長的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等邊三角形ABC中.DAB邊上的動點(diǎn),以CD為一邊,向上作等邊三角形EDC.連接AE.

(l)求證:DBCEAC

(2)試說明AEBC的理由.

(3)如圖②,當(dāng)圖①中動點(diǎn)D運(yùn)動到邊BA的延長線上時(shí),所作仍為等邊三角形,猜想是否仍有AEBC?若成立請證明.

查看答案和解析>>

同步練習(xí)冊答案