【題目】已知拋物線y=ax2+bx+3在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A,B,P是其對稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0,②x=3是ax2+bx+3=0的一個(gè)根,③△PAB周長的最小值是+3.其中正確的是( 。
A. ①②③ B. 僅有①② C. 僅有①③ D. 僅有②③
【答案】A
【解析】
①根據(jù)對稱軸方程求得a、b的數(shù)量關(guān)系;
②根據(jù)拋物線的對稱性知拋物線與x軸的另一個(gè)交點(diǎn)的橫坐標(biāo)是3;
③利用兩點(diǎn)間直線最短來求△PAB周長的最小值.
①根據(jù)圖象知,對稱軸是直線x=-=1,則b=-2a,即2a+b=0,故①正確;
②根據(jù)圖象知,點(diǎn)A的坐標(biāo)是(-1,0),對稱軸是x=1,則根據(jù)拋物線關(guān)于對稱軸對稱的性質(zhì)知,拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(3,0),所以x=3是ax2+bx+3=0的一個(gè)根,故②正確;
③如圖所示,點(diǎn)A關(guān)于x=1對稱的點(diǎn)是A′,即拋物線與x軸的另一個(gè)交點(diǎn),
連接BA′與直線x=1的交點(diǎn)即為點(diǎn)P,則△PAB周長的最小值是(BA′+AB)的長度,
∵B(0,3),A′(3,0),
∴BA′=3.即△PAB周長的最小值是3+,
故③正確.
綜上所述,正確的結(jié)論是:①②③.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)研究,人體內(nèi)血乳酸濃度升高是運(yùn)動(dòng)后感覺疲勞的重要原因,運(yùn)動(dòng)員未運(yùn)動(dòng)時(shí),體內(nèi)血乳酸濃度水平通常在40mg/L以下;如果血乳酸濃度降到50mg/L以下,運(yùn)動(dòng)員就基本消除了疲勞,體育科研工作者根據(jù)實(shí)驗(yàn)數(shù)據(jù),繪制了一副圖象,它反映了運(yùn)動(dòng)員進(jìn)行高強(qiáng)度運(yùn)動(dòng)后,體內(nèi)血乳酸濃度隨時(shí)間變化而變化的函數(shù)關(guān)系.
下列敘述正確的是
A. 運(yùn)動(dòng)后40min時(shí),采用慢跑活動(dòng)方式放松時(shí)的血乳酸濃度與采用靜坐方式休息時(shí)的血乳酸濃度相同
B. 運(yùn)動(dòng)員高強(qiáng)度運(yùn)動(dòng)后最高血乳酸濃度大約為350mg/L
C. 運(yùn)動(dòng)員進(jìn)行完劇烈運(yùn)動(dòng),為了更快達(dá)到消除疲勞的效果,應(yīng)該采用慢跑活動(dòng)方式來放松
D. 采用慢跑活動(dòng)方式放松時(shí),運(yùn)動(dòng)員必須慢跑80min后才能基本消除疲勞
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫樹形圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在二次函數(shù)y=x2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,將△ABD沿BD(對稱軸)翻折,點(diǎn)A落在點(diǎn)E處,連接AE,CE.
(1)如圖1,當(dāng)∠AEC=90°時(shí),求證:CD=AD;
(2)當(dāng)點(diǎn)E落在BC邊所在直線上,且∠AEC=60°時(shí).
①猜想△BAE是什么三角形并證明;
②試求線段CD、AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1、2中,已知∠ABC=120°,BD=2,點(diǎn)E為直線BC上的動(dòng)點(diǎn),連接DE,以DE為邊向上作等邊△DEF,使得點(diǎn)F在∠ABC內(nèi)部,連接BF.
(1)如圖1,當(dāng)BD=BE時(shí),∠EBF= ;
(2)如圖2,當(dāng)BD≠BE時(shí),(1)中的結(jié)論是否成立?若成立,請予以證明,若不成立請說明理由;
(3)請直接寫出線段BD,BE,BF之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且DA=DB,此時(shí)△ACD也恰好為等腰三角形,則∠BAC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若,則△A6B6A7的邊長為( 。
A.6B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+2的圖象與x軸和y軸分別交于點(diǎn)A和B,直線y=kx+b經(jīng)過點(diǎn)B與點(diǎn)C(2,0).
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)求直線y=kx+b的表達(dá)式;
(3)在x軸上有一動(dòng)點(diǎn)M(t,0),過點(diǎn)M做x軸的垂線與直線y=x+2交于點(diǎn)E,與直線y=kx+b交于點(diǎn)F,若EF=OB,求t的值.
(4)當(dāng)點(diǎn)M(t,0)在x軸上移動(dòng)時(shí),是否存在t的值使得△CEF是直角三角形?若存在,直接寫出t的值;若不存在,直接答不存在.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com