【題目】如圖,正方形和正方形中,點(diǎn)在CG上,BC=1,CE=3,H是AF的中點(diǎn),那么的長是( )
A.B.C.D.2
【答案】B
【解析】
延長BA和FG交于點(diǎn)M,連接AC和CF,根據(jù)正方形的性質(zhì)可得四邊形MADG為矩形,GM=AB=BC=CD=1, GC=CE=GF=3,∠ACD=∠GCF=45°,從而求出MA、MF、∠M和∠ACF,根據(jù)勾股定理即可求出AF,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出結(jié)論.
解:延長BA和FG交于點(diǎn)M,連接AC和CF
∵正方形和正方形中,BC=1,CE=3,
∴四邊形MADG為矩形,GM=AB=BC=CD=1, GC=CE=GF=3,∠ACD=∠GCF=45°
∴MA=GD=GC-CD=2,MF=GM+GF=4,∠M=90°,∠ACF=∠ACD+∠GCF=90°
根據(jù)勾股定理可得AF=
∵H是AF的中點(diǎn),
∴CH=AF=
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的斜邊在軸的正半軸上,點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,且,若將繞著點(diǎn)旋轉(zhuǎn)后30°,點(diǎn)和點(diǎn)分別落在點(diǎn)和點(diǎn)處,那么直線的解析式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與應(yīng)用:
閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)? ,所以 ,從而 (當(dāng)a=b時(shí)取等號).
閱讀2:函數(shù) (常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng) 即 時(shí),函數(shù) 的最小值為 .
閱讀理解上述內(nèi)容,解答下列問題:
(1)問題1:已知一個(gè)矩形的面積為4,其中一邊長為x,則另一邊長為 ,周長為 ,求當(dāng)x=時(shí),周長的最小值為 .
(2)問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=時(shí), 的最小值為 .
(3)問題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰中,,, 底角為,動(dòng)點(diǎn)從點(diǎn)向點(diǎn)運(yùn)動(dòng),當(dāng)是直角三角形是長為( )
A.4B.2或3C.3或4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),觀察每次變換前后的三角形有何變化,找出規(guī)律,按此變換規(guī)律將△OA3B3變換成△OAnBn, ,則An的坐標(biāo)是_______ ,Bn的坐標(biāo)是_________ .
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山腳下有一棵樹AB,小強(qiáng)從點(diǎn)B沿山坡向上走50m到達(dá)點(diǎn)D,用高為1.5m的測角儀CD測得樹頂為10°,已知山坡的坡腳為15°,則樹AB的高=(精確到0.1m)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com