當(dāng)拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m-1),設(shè)頂點(diǎn)為P(x0,y0),則:數(shù)學(xué)公式
當(dāng)m的值變化時,頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實(shí)數(shù)時,拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運(yùn)用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點(diǎn)縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實(shí)數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

解:(1)配方法;完全平方公式;消元法;

(2)y=x2-2mx+2m2-4m+3=(x-m)2+2m2-4m+2,
∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m2-4m+2),設(shè)頂點(diǎn)為P(x0,y0),則:,
當(dāng)m的值變化時,頂點(diǎn)橫、縱坐標(biāo)x0,y0的值也隨之變化,
∴y0=2x02-4x0+2,
可見,不論m取任何實(shí)數(shù)時,拋物線的頂點(diǎn)坐標(biāo)都滿足y=2x2-4x+2;

(3)不存在.理由如下:
∵拋物線y=x2-2mx+2m2-4m+3與x軸兩交點(diǎn)A(x1,0)、B(x2,0),
∴x2-2mx+2m2-4m+3=0的兩個根為x1、x2,
∴x1+x2=2m,x1•x2=2m2-4m+3,
∴AB=|x1-x2|===
∴AB的最大值為2,
∴不存在實(shí)數(shù)m,使AB=4.
分析:(1)利用配方法把二次函數(shù)的一般式配成頂點(diǎn)式,通過消元可得到拋物線的頂點(diǎn)坐標(biāo)都滿足的函數(shù)關(guān)系;
(2)根據(jù)(1)給的方法:先配成y=(x-m)2+2m2-4m+2,得到頂點(diǎn)坐標(biāo),然后消去m,得到y(tǒng)與x的關(guān)系式;
(3)先根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2m,x1•x2=2m2-4m+3,然后利用AB=|x1-x2|,通過變形得到AB=,即可得到AB的最大值為2,由此得到不存在實(shí)數(shù)m,使AB=4.
點(diǎn)評:本題考查了二次函數(shù)綜合題:拋物線的頂點(diǎn)式y(tǒng)=a(x-h)2+k(a≠0),則頂點(diǎn)坐標(biāo)為(h,k);拋物線與x軸兩交點(diǎn)的距離.也考查了代數(shù)式的變形能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在直角坐標(biāo)系中,A、B兩點(diǎn)是拋物線y=x2-(m-3)x-m與x軸的交點(diǎn)(A在B的右側(cè)),x1、x2分別是A、B兩點(diǎn)的橫坐標(biāo),且|x1-x2|=3.
(1)當(dāng)m>0時,求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點(diǎn)C,問y軸上是否存在點(diǎn)D(不含與C重合的點(diǎn)),使得以D、O、A為頂點(diǎn)的三角形與△AOC相似?若存在,請求出D點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點(diǎn),且當(dāng)k>0時,圖象與兩坐標(biāo)軸所圍成的面積是
15
,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于二次函數(shù)y=ax2+bx+c(a≠0),如果當(dāng)x取任意整數(shù)時,函數(shù)值y都是整數(shù),此時稱該點(diǎn)精英家教網(wǎng)(x,y)為整點(diǎn),該函數(shù)的圖象為整點(diǎn)拋物線(例如:y=x2+2x+2).
(1)請你寫出一個二次項(xiàng)系數(shù)的絕對值小于1的整點(diǎn)拋物線的解析式
 
(不必證明);
(2)請直接寫出整點(diǎn)拋物線y=x2+2x+2與直線y=4圍成的陰影圖形中(不包括邊界)所含的整點(diǎn)個數(shù)有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx-4k的圖象與x軸交于點(diǎn)A,拋物線y=ax2+bx+c(a>0)經(jīng)過O、A兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo),并用含a的代數(shù)式表示b;
(2)已知點(diǎn)C(1,5),點(diǎn)B是拋物線上一點(diǎn),且四邊形OABC為平行四邊形,求此時拋物線的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)D是拋物線上且在直線OB下方的一個動點(diǎn),當(dāng)△OBD是等腰三角形時,符合條件的點(diǎn)D有幾個?請求出其中一個點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平)在平面直角坐標(biāo)系中,矩形OABC如圖所示放置,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(m,1)(m>0),將此矩形繞O點(diǎn)逆時針旋轉(zhuǎn)90°,得到矩形OA′B′C′.
(1)寫出點(diǎn)A、A′、C′的坐標(biāo);
(2)設(shè)過點(diǎn)A、A′、C′的拋物線解析式為y=ax2+bx+c,求此拋物線的解析式;(a、b、c可用含m的式子表示)
(3)試探究:當(dāng)m的值改變時,點(diǎn)B關(guān)于點(diǎn)O的對稱點(diǎn)D是否可能落在(2)中的拋物線上?若能,求出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省茂名市高中階段學(xué)校招生考試數(shù)學(xué)試題 題型:059

已知:如圖,直線l,經(jīng)過點(diǎn),一組拋物線的頂點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數(shù))依次是直線l上的點(diǎn),這組拋物線與x軸正半軸的交點(diǎn)依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n為正整數(shù)),設(shè)x1=d(0<d<1).

(1)求b的值;

(2)求經(jīng)過點(diǎn)A1、B1、A2的拋物線的解析式(用含d的代數(shù)式表示)

(3)定義:若拋物線的頂點(diǎn)與x軸的兩個交點(diǎn)構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.

探究:當(dāng)d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應(yīng)的d的值.

查看答案和解析>>

同步練習(xí)冊答案