【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中有一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線。
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線;
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù);
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長。
【答案】(1)詳見解析;(2)∠ACB=96°或114°;(3)CD=.
【解析】
試題分析:(1)由∠A=40°,∠B=60°可得∠ACB=80°,即△ABC不是等腰三角形,再判定△ACD是等腰三角形,△BCD∽△BAC,即可得CD為△ABC的完美分割線;(2)分AD=CD,AD=AC,AC=CD三種情況,根據(jù)這三種情況分別求出∠ACB的度數(shù),不合題意的舍去;(3)由△BCD∽△BAC可得,設(shè)BD=x,代入可得,由于x>0,即可知x=-1.再由△BCD∽△BAC,所以,解得CD=.
試題解析:(1)∵∠A=40°,∠B=60°,
∴∠ACB=80°,
∴△ABC不是等腰三角形,
又因CD為角平分線,
∴∠ACD=∠BCD=∠ABC=40°,
∴∠ACD=∠A=40°,
∴△ACD是等腰三角形,
∵∠BCD=∠A=40°,∠B=∠B,
∴△BCD∽△BAC,
∴CD為△ABC的完美分割線;
(2)當AD=CD時(如圖①),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°;
當AD=AC時(如圖②),∠ACD=∠ADC=,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°;
當AC=CD時(如圖③),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍去.
∴∠ACB=96°或114°;
(3)由已知AC=AD=2,
∵△BCD∽△BAC,
∴,
設(shè)BD=x
∴
解得x=-1±,
∵x>0,
∴x=-1.
∵△BCD∽△BAC,
∴,
∴CD=.
科目:初中數(shù)學 來源: 題型:
【題目】(2016四川省樂山市第16題)在直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:若,則稱點Q為點P的“可控變點”.
例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).
(1)若點(﹣1,﹣2)是一次函數(shù)圖象上點M的“可控變點”,則點M的坐標為 ;
(2)若點P在函數(shù)()的圖象上,其“可控變點”Q的縱坐標y′的取值范圍是,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
1.新知學習
若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
2.解決問題
已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點,連接AD,M為AB上的一點(0<AM<1),E是DC上的一點,連接ME,ME與AD交于點O,且S△MOA=S△DOE.
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有5條線段,它們的長度分別為1cm,2cm,3cm,4cm,5cm,以其中三條線段為邊長,可組成不同的三角形的個數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列每一組數(shù)據(jù)中的三個數(shù)值分別為三角形的三邊長,不能構(gòu)成直角三角形的是( )
A.3、4、5B.6、8、10C.5、12、13D.5、5、7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A.(3-x)(3+x)=9-x2
B.x2+2x+1=x(x+1)+1
C.a2b+ab2=ab(a+b)
D.(a-b)(n-m)=(b-a)(n-m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國慶放假時,小明一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆。早上從家里出發(fā),向東走了6千米到超市買東西,然后又向東走了1.5千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里。
(1)若以家為原點,向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點A、B、C表示出來;
(2)問超市A和外公家C相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:km)依先后次序記錄如下:+2、 、 、 +4、 、 +6、 、。
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com