【題目】如圖,在△ABC中,DE∥BC,EF∥AB.

(1)求證:△ADE∽△EFC;

(2)如果AB=6,AD=4,求的值.

【答案】(1)證明見解析;(2)4.

【解析】

(1)由DEBC,EFAB,根據(jù)平行線的性質(zhì),可證得∠1=C,A=2,即可得ADE∽△EFC;

(2)由ABEF,DEBC,可得四邊形BDEF為平行四邊形,又由AB=6,AD=4,即可求得EF的長,然后由相似三角形面積比等于相似比的平方求得的值.

(1)證明:如圖,

DEBC,EFAB,

∴∠1=C,A=2,

∴△ADE∽△EFC;

(2)ABEF,DEBC,

∴四邊形BDEF為平行四邊形.

BD=EF,

AB=6,AD=4.

EF=BD=AB-AD=6-4=2,

=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為,且拋物線與直線相交于兩點,且點軸上,點的坐標(biāo)為,連接.

1 , , (直接寫出結(jié)果);

2)當(dāng)時,則的取值范圍為 (直接寫出結(jié)果);

3)在直線下方的拋物線上是否存在一點,使得的面積最大?若存在,求出的最大面積及點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的益智玩具由一塊主板AB和一個支撐架CD組成,其側(cè)面示意圖如圖1所示,測得AB⊥BD,AB=40cm,CD=25cm,點CAB的中點.現(xiàn)為了方便兒童操作,需調(diào)整玩具的擺放,將AB繞點B順時針旋轉(zhuǎn),CD繞點C旋轉(zhuǎn),同時點D做水平滑動(如圖2),當(dāng)點C1BD的距離為10cm時停止運動,求點A經(jīng)過的路徑的長和點D滑動的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1732, ≈4583,π≈3142)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+6x軸交于點A6,0),B(﹣1,0),與y軸交于點C

1)求拋物線的解析式;

2)若點M為該拋物線對稱軸上一點,當(dāng)CM+BM最小時,求點M的坐標(biāo).

3)拋物線上是否存在點P,使BCP為等腰三角形?若存在,有幾個?并請在圖中畫出所有符合條件的點P,(保留作圖痕跡);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“垃圾分類”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就“垃圾分類”知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有  人,條形統(tǒng)計圖中的值為  ;

2)扇形統(tǒng)計圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為  

3)若從對垃圾分類知識達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加垃圾分類知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個三角形先沿x軸翻折,再向右平移兩個單位稱為一次變換,如圖,已知等邊三角形ABC的頂點B、C的坐標(biāo)分別是,(-1-1),(-3,-1),把三角形ABC經(jīng)過連續(xù)9次這樣的變換得到三角形A’B’C’,則點A的對應(yīng)點A’的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC頂點A(6,0)、C0,4),直線分別交BA、OA于點D、E,且DBA中點。

1)求k的值及此時△EAD的面積;

2)現(xiàn)向矩形內(nèi)隨機(jī)投飛鏢,求飛鏢落在△EAD內(nèi)的概率。(若投在邊框上則重投)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,對角線,交于點. 中點,連接于點,且.

1)求的長;

2)若的面積為2,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案