【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫做該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點B在第一象限,A,C分別在x軸和y軸上,拋物線y=(x﹣a)2+b經(jīng)過B,C兩點,頂點D在正方形內(nèi)部.若點D有一條特征線是y=x+2,則此拋物線的表達式是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若整數(shù)a既使關(guān)于x的分式方程﹣=1的解為非負數(shù),又使不等式組有解,且至多有5個整數(shù)解,則滿足條件的a的和為( 。
A.﹣5B.﹣3C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結(jié)論:①b=2a;②c﹣a=n;③拋物線另一個交點(m,0)在﹣2到﹣1之間;④當(dāng)x<0時,ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有兩個不相等的實數(shù)根其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ΔABC的三個頂點都在格點上,點A的坐標(biāo)(4,4),請解答下列問題:
(1)畫出ΔABC關(guān)于y軸對稱的ΔA1B1C1,并寫出點A1,B1,C1的坐標(biāo);
(2)將ΔABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的ΔA2B2C,并寫出點A2,B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,動點E在AC上,AF⊥AC,垂足為A,AF=AE.
(1)BF和DE有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在其他條件都保持不變的是情況下,當(dāng)點E運動到AC中點時,四邊形AFBE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+m的圖象經(jīng)過點P(4,5),與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,且S△PAB=10.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點Q使得△PAQ和△PBQ的面積相等?若存在,求出Q點的坐標(biāo),若不存在,請說明理由;
(3)過A、P、C三點的圓與拋物線交于另一點D,求出D點坐標(biāo)及四邊形PACD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:如果二次函數(shù)的圖像經(jīng)過點(-1,0),那么稱此二次函數(shù)的圖像為“定點拋物線”
(1)試判斷二次函數(shù)的圖像是否為“定點拋物線”
(2)若定點拋物線與x軸只有一個公共點,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com