【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.
(1)若∠BAC =90°,求∠DAE的度數(shù);
(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)
(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).
【答案】(1)45°;(2)∠DAE=30°;(3)α+2β=180.
【解析】
(1)由題意得出∠BEA= ,∠CDA =,再在△ADE中
利用內(nèi)角和等于180°即可.
(2)同(1)理可快速得出答案.
(3)綜合(1)(2)可總結(jié)出α與β的之間數(shù)量關(guān)系.
(1)∵AB=BE ,AC=CD
∴∠BEA= ,∠CDA =
在△ADE中
∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )=×(180°90°)=45°
(2)∠DAE=30°
理由:∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )= 30°
(3)α+2β=180
理由:∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )
∠DAE=(180°∠BAC )
α+2β=180.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時,平移后的拋物線總有不動點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】烏魯木齊周邊多地盛產(chǎn)草莓,今年某水果銷售店在草莓銷售旺季,以15元/kg 的成本價進(jìn)50kg有機(jī)草莓,銷售人員銷售發(fā)現(xiàn)草莓損壞率為25%;
(1)對于水果店來說完好的草莓實(shí)際成本價是多少元/kg?
(2)按照這個實(shí)際成本設(shè)計銷售單價,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象,設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4.求證:AD∥BE.
證明:∵∠4=∠AFD( ),
∵∠3=∠4(已知),
∴∠3=∠ ( ).
∵∠1=∠2(已知),
∴∠1+∠3=∠2+∠AFD( ).
∴∠D=∠ ( ).
∴∠B=∠ ( ).
∴∠________=∠ ( ).
∴AD∥BE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過原點(diǎn)O及點(diǎn)A和點(diǎn)B.
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點(diǎn)C,將直線沿y軸向下平移n個單位后得到直線l,若直線l經(jīng)過B點(diǎn),與y軸交于點(diǎn)D,且與拋物線的對稱軸交于點(diǎn)E.若P是拋物線上一點(diǎn),且PB=PE,求點(diǎn)P的坐標(biāo);
(3)如圖2,將拋物線向上平移9個單位得到新拋物線,直接寫出下列兩個問題的答案:
①直線至少向上平移多少個單位才能與新拋物線有交點(diǎn)?
②新拋物線上的動點(diǎn)Q到直線的最短距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:一條對角線垂直平分另一條對角線的四邊形叫做箏形,如圖,箏形ABCD的對角線AC、BD相交于點(diǎn)O.且AC垂直平分BD.
(1)請結(jié)合圖形,寫出箏形兩種不同類型的性質(zhì):性質(zhì)1: ;性質(zhì)2: .
(2)若AB∥CD,求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列資料,解決問題:
定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,如:,這樣的分式就是真分式;當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”,如:這樣的分式就是假分式,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:.
(1)分式是 (填“真分式”或“假分式”);
(2)將假分式分別化為帶分式;
(3)如果分式的值為整數(shù),求所有符合條件的整數(shù)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com