23、(1)如圖1,點(diǎn)E是AB,CD之間的一點(diǎn)且AB∥CD,試說(shuō)明:∠BED=∠B+∠D;

(2)如圖2,點(diǎn)E是AB,CD外一點(diǎn)且AB∥CD,結(jié)論有什么變化?
分析:此類(lèi)題主要是構(gòu)造平行線,運(yùn)用平行線的性質(zhì)進(jìn)行推理.
解答:解:(1)過(guò)點(diǎn)E作MN∥AB,根據(jù)平行線的傳遞性,則MN∥CD.
∵M(jìn)N∥AB,MN∥CD,
∴∠BEN=∠B,∠NED=∠D,
∴∠BED=∠B+∠D;

(2)∠BED=∠D-∠B.
理由如下:過(guò)點(diǎn)E作MN∥AB,
根據(jù)平行線的傳遞性,則MN∥CD.
∵M(jìn)N∥AB,MN∥CD,
∴∠BEN=∠B,∠NED=∠D.
∴∠BED=∠D-∠B.
點(diǎn)評(píng):此類(lèi)題注意輔助線的方法,主要運(yùn)用了平行線的性質(zhì)以及等式的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,y=x2+ax+2a與x軸交于A,B兩點(diǎn),點(diǎn)E(2,0)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)C在此拋物線上,點(diǎn)P(4,2).
(1)求拋物線解析式;
(2)如圖1,點(diǎn)F是線段AC上一動(dòng)點(diǎn),作矩形FC1B1A1,使C1在CB上,B1,A1在AB上,設(shè)線段A1F的長(zhǎng)為a,求矩形FC1B1A1的面積S與a的函數(shù)關(guān)系式,并求S的最大值;
(3)如圖2,在(1)的拋物線上是否存在兩個(gè)點(diǎn)M,N,使以O(shè),M,N,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)B是線段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AE和CD.
(1)求證:AE=CD;
(2)如圖2,點(diǎn)P、Q分別是AE、CD的中點(diǎn),試判斷△PBQ的形狀,并證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•襄陽(yáng))如圖1,點(diǎn)A是線段BC上一點(diǎn),△ABD和△ACE都是等邊三角形.
(1)連結(jié)BE,CD,求證:BE=CD;
(2)如圖2,將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB′D′.
①當(dāng)旋轉(zhuǎn)角為
60
60
度時(shí),邊AD′落在AE上;
②在①的條件下,延長(zhǎng)DD’交CE于點(diǎn)P,連接BD′,CD′.當(dāng)線段AB、AC滿足什么數(shù)量關(guān)系時(shí),△BDD′與△CPD′全等?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,點(diǎn)C是線段AB上一點(diǎn),分別以AC,BC為邊在AB的同側(cè)作等邊△ACM和△CBN,連接AN,BM.分別取BM,AN的中點(diǎn)E,F(xiàn),連接CE,CF,EF.觀察并猜想△CEF的形狀,并說(shuō)明理由.
(2)若將(1)中的“以AC,BC為邊作等邊△ACM和△CBN”改為“以AC,BC為腰在AB的同側(cè)作等腰△ACM和△CBN,”如圖2,其他條件不變,那么(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若點(diǎn)P是反比例函數(shù)y=
5
2x
圖象上的任意一點(diǎn),且PD⊥x軸于點(diǎn)D,則△POD的面積是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊(cè)答案