求函數(shù)y=x2-4x-10+(
6
-
x2-x-6
)0
的最小值.
根據(jù)x2-x-6≥0且x2-x-6≠6時,函數(shù)才有意義,
解得:x≤-2且x≠-3或x≥3且x≠4,
此時函數(shù)y=x2-4x-9,
圖象如圖:

在x≤-2且x≠-3或x≥3且x≠4的范圍內可知,
當x=3時,這個函數(shù)的最小值為-12.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( 。
A.a>0B.c>0C.-
b
2a
<0
D.b2+4ac>0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的最小值是5
3
4
,且a:b:c=2:3:4,則a=______,b=______,c=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

函數(shù)y=x2-4x+5(0≤x≤5)的最小值和最大值分別是______,______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用長度為12cm的鐵絲圍成一個矩形,矩形的最大面積是( 。
A.9cm2B.10cm2C.12cm2D.16cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某節(jié)目設置了如下表所示的翻獎牌.每次翻開一個數(shù)字,考慮”中獎”的可能性有多大.
(1)如果用實驗進行估計但又覺得制作翻獎片太麻煩,能否用簡便的模擬實驗來替代?
(2)估計“未中獎”的可能性有多大,“中獎”的可能性有多大,你能找出它們之間的關系嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABDC,AB=2,DC=10,AD=BC=5,點M、N分別在AD、BC上運動,并保持MNAB,ME⊥DC,NF⊥DC,垂足分別為E、F.
(1)求梯形ABCD的面積;
(2)探究一:四邊形MNFE的面積有無最大值?若有,請求出這個最大值;若無,請說明理由;
(3)探究二:四邊形MNFE能否為正方形?若能,請求出正方形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點E(x1,y1)、F(x2,y2)在拋物線y=ax2+bx+c的對稱軸的同側(點E在點F的左側),過點E、F分別作x軸的垂線,分別交x軸于點B、D,交直線y=2ax+b于點A、C,設S為直線AB、CD與x軸、直線y=2ax+b所圍成圖形的面積.則S與y1、y2的數(shù)量關系式為:S=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數(shù)的特征數(shù).

查看答案和解析>>

同步練習冊答案