【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于F,交AC于E,過點O作OD⊥BC于D,下列三個結論: ①∠AOB=90°+;②當∠C=90°時,E,F分別是AC,BC的中點;③若OD=a,CE+CF=2b,則S△CEF=ab,其中正確的是( )
A. ①②③B. ①③C. ①②D. ①
【答案】B
【解析】
根據三角形的內角和定理可得∠BAC+∠ABC=180°-∠C,再根據角平分線的定義可得∠OAB+∠OBA=(∠BAC+∠ABC),然后根據三角形的內角和定理列式整理即可得解,判斷出①正確;根據角平分線的定義判斷出點O在∠ACB的平分線上,從而得到點O不是∠ACB的平分線的中點,然后判斷出②錯誤;根據角平分線上的點到角的兩邊距離相等可得點O到AC的距離等于OD,再利用三角形的面積公式列式計算即可得到S△CEF=ab,判斷出③正確.
解:在△ABC中,∠BAC+∠ABC=180°-∠C,
∵∠BAC和∠ABC的平分線相交于點O,
∴∠OAB+∠OBA=(∠BAC+∠ABC)=90°-∠C,
在△AOB中,∠AOB=180°-(90°-∠C)=90°+∠C,故①正確;
∵∠BAC和∠ABC的平分線相交于點O,
∴點O在∠ACB的平分線上,
∴點O不是∠ACB的平分線的中點,
∵EF∥AB,
∴E,F一定不是AC,BC的中點,故②錯誤;
∵點O在∠ACB的平分線上,
∴點O到AC的距離等于OD,
∴S△CEF=(CE+CF)OD=2ba=ab,故③正確;
綜上所述,正確的是①③.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(x>0)與正比例函數y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,D 是 AC 邊上一動點, CE⊥BD 于 E.
(1)如圖(1),若 BD 平分∠ABC 時,①求∠ECD 的度數;②求證:BD=2EC;
(2)如圖(2),過點 A 作 AF⊥BE 于點 F,猜想線段 BE,CE,AF 之間的數量關系并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+8與x軸,y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市決定在全市中小學開展“關注校車、關愛學生”為主題的交通安全教育宣傳周活動,幸福中學為了了解學生的上學方式,在本校范圍內隨機抽查了部分學生,將收集的數據繪制成如下兩副不完整的統(tǒng)計圖(如圖所示),請根據圖中提供的信息,解答下列問題.
(1)m= %,這次共抽取 名學生進行調查;
(2)求騎自行車上學的人數?并補全條形圖;
(3)在這次抽樣調查中,采用哪種上學方式的人數最多?
(4)在扇形統(tǒng)計圖中,步行所對應的扇形的圓心角的度數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l:y=kx+1與拋物線y=x2-4x
(1)求證:直線l與該拋物線總有兩個交點;
(2)設直線l與該拋物線兩交點為A,B,O為原點,當k=-2時,求△OAB的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com