如圖為2002年國際數(shù)學家大會的會標,它可以看成由四個形狀、大小完全相同的直角三角形拼成(其中較大的直角邊長為a,較小的直角邊長為b,斜邊長為c),根據(jù)此圖,回答下列問題:
(1)請你通過不同方法計算中間小正方形的面積,并得出一個等式.
(2)你能用一句話概括這個結(jié)論嗎?
(3)利用剛才的結(jié)論解決下面的問題:已知一個直角三角形的兩直角邊為5和12,試問斜邊上的高為多少?
分析:(1)中間小正方形的面積有兩種求法,一種是直接求,由直角三角形長直角邊減去短直角邊,得到小正方形的邊長,利用正方形的面積公式表示出S;一種是間接求,用大正方形的面積減去四個直角三角形的面積,兩種求法求出的面積相等,列出等式;
(2)直角三角形兩直角邊的平方和等于斜邊的平方;
(3)利用此結(jié)論求出斜邊的長,利用面積法即可求出斜邊上的高.
解答:解:(1)設中間小正方形的面積為S,
根據(jù)題意得:S=c2-4×
1
2
ab=c2-2ab;S=(a-b)2=a2-2ab+b2,
∴c2-2ab=a2-2ab+b2,即c2=a2+b2
(2)直角三角形兩直角邊的平方和等于斜邊的平方;
(3)∵直角三角形兩直角邊分別為5和12,
∴斜邊為
52+122
=13,
∵三角形的面積S=
1
2
×5×12=
1
2
×13h,
則斜邊上的高h=
60
13
點評:此題考查了整式混合運算的應用,屬于探究型試題,弄清題意是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是2002年8月在北京召開的第24屆國際數(shù)學家大會會標的圖形,它由四個相同的直角三角形拼合而成.若大正方形的面積為13,每個直角三角形直角邊的和是5,則中間小正方形的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是2002年8月在北京召開的第24屆國際數(shù)學家大會的會標,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形,若大正方形的面積為13,小正方形的面積是1,直角三角形較長的直角邊為a,較短的直角邊為b,則a4+b3的值等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是2002年北京第24屆國際數(shù)學家大會會徽,由4個全等的直角三角形拼合而成,若圖中大小正方形的面積分別為52和4,則直角三角形的兩直角邊分別為
6和4
6和4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖為2002年國際數(shù)學家大會的會標,它可以看成由四個形狀、大小完全相同的直角三角形拼成(其中較大的直角邊長為a,較小的直角邊長為b,斜邊長為c),根據(jù)此圖,回答下列問題:
(1)請你通過不同方法計算中間小正方形的面積,并得出一個等式.
(2)你能用一句話概括這個結(jié)論嗎?
(3)利用剛才的結(jié)論解決下面的問題:已知一個直角三角形的兩直角邊為5和12,試問斜邊上的高為多少?

查看答案和解析>>

同步練習冊答案