【題目】一股民上星期五買進(jìn)某公司股票股,每股元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)

星期

每股漲跌

星期三收盤時(shí),每股是________元;

本周內(nèi)每股最高價(jià)為________元,每股最低價(jià)為________元;

已知該股民買進(jìn)股票時(shí)付了的手續(xù)費(fèi),賣出時(shí)還需付成交額的手續(xù)費(fèi)和的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?

【答案】(1)34.5;(2)35.5;28;(3)889.5元.

【解析】

(1)本題先根據(jù)題意列出式子解出結(jié)果即可.
(2)根據(jù)要求列出式子解出結(jié)果即可.
(3)先算出剛買股票后去掉手續(xù)費(fèi)剩余的錢是多少,然后再算出周五賣出股票后所 剩的錢,最后再減去當(dāng)時(shí)的錢,剩下的錢就是所收益的.

解:(1)根據(jù)題意得:
27+4+4.5-1,
=35.5-1,
=34.5
(2)根據(jù)題意得:
27+4+4.5,
=35.5
27+4+4.5-1-2.5-4,
=35.5-1-2.5-4,
=28
(3)27×1000×(1+1.5‰)
=27000×(1+1.5‰)
=27040.5(元)
28×1000-28×1000×1.5‰-28×1000×1‰
=28000-28000×1.5‰-28000×1‰
=28000-42-28
=27930(元)
27930-27040.5.5=889.5(元)

故答案為:(1)34.5;(2)35.5;28;(3)889.5元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將該拋物線向右平移1個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)A,求點(diǎn)A的坐標(biāo);
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點(diǎn)C,點(diǎn)A關(guān)于平移后拋物線的對稱軸的對稱點(diǎn)為點(diǎn)B,兩條拋物線在點(diǎn)A、C和點(diǎn)A、B之間的部分(包含點(diǎn)A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個(gè)單位,在平移過程中直線與圖象M始終有兩個(gè)公共點(diǎn),請你寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD相交于點(diǎn)O,且OAD=OCB,延長AD、CB交于點(diǎn)P,那么圖中的相似三角形的對數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,一次函數(shù)y=kx+k與正比例函數(shù)y=kx的圖像可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長線上的一點(diǎn),且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與x軸的交點(diǎn)坐標(biāo)是;頂點(diǎn)坐標(biāo)是;
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

x

y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O的半徑是5cm,PA、PB切⊙O于點(diǎn)A、B兩點(diǎn),∠PAB=60°.求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線段CB的延長線上,∠BAC≠90°時(shí),請將圖3補(bǔ)充完整,并直接寫出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

同步練習(xí)冊答案