【題目】近日,某中學(xué)舉辦了一次以弘揚(yáng)傳統(tǒng)文化為主題的漢字聽寫比賽,初一和初二兩個(gè)年級(jí)各有600名學(xué)生參加,為了更好地了解本次比賽成績(jī)的分布情況,學(xué)校分別從兩個(gè)年級(jí)隨機(jī)抽取了若干名學(xué)生的成績(jī)作為樣本進(jìn)行分析,下面是初二年級(jí)學(xué)生成績(jī)樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分?jǐn)?shù)段中的分?jǐn)?shù)包括最低分,不包括最高分)

初二學(xué)生樣本成績(jī)頻數(shù)分布表

分組/

頻數(shù)

頻率

5060

2

6070

4

0.10

7080

0.20

8090

14

0.35

90100

合計(jì)

40

1.00

請(qǐng)根據(jù)所給信息,解答下列問題:

1)補(bǔ)全成績(jī)頻數(shù)分布表和頻數(shù)分布直方圖.

2)若初二學(xué)生成績(jī)樣本中8090分段的具體成績(jī)?yōu)椋?/span>

80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89

①根據(jù)上述信息,估計(jì)初二學(xué)生成績(jī)的中位數(shù)為__________

②若初一學(xué)生樣本成績(jī)的中位數(shù)為80,甲同學(xué)在比賽中得到了82分,在他所在的年級(jí)中位居275名,根據(jù)上述信息推斷甲同學(xué)所在年級(jí)為__________(選填初一或者初二).

③若成績(jī)?cè)?/span>85分及以上均為優(yōu)秀,請(qǐng)你根據(jù)抽取的樣本數(shù)據(jù),估計(jì)初二年級(jí)學(xué)生中達(dá)到優(yōu)秀的學(xué)生人數(shù)為__________人.

【答案】10.05,8,120.30,畫圖見解析;(2)①82.75,②初一,③270

【解析】

1)根據(jù)題意先求出頻數(shù)和頻率,填入并補(bǔ)全成績(jī)頻數(shù)分布表和頻數(shù)分布直方圖即可;

2由題意可知共40名學(xué)生,中位數(shù)應(yīng)取第20和第21個(gè)數(shù)據(jù)的平均數(shù),進(jìn)行分析計(jì)算求解;

根據(jù)題意得出甲同學(xué)的成績(jī)高于所在年級(jí)的中位數(shù),求出初二年級(jí)的中位數(shù),進(jìn)行比較分析;

由題意得出80~90這一組中有6個(gè)數(shù)據(jù)在85分及以上,90~100這一組中有12個(gè)數(shù)據(jù),據(jù)此進(jìn)行分析計(jì)算.

解:(1)頻數(shù)4÷0.10×0.20=840-2-4-8-14=12,頻率2÷40=0.051-0.10-0.20-0.35-0,05=0.30,

初二學(xué)生樣本成績(jī)頻數(shù)分布表

分組/

頻數(shù)

頻率

5060

2

005

6070

4

010

7080

8

020

8090

14

035

90100

12

030

合計(jì)

40

100

240名學(xué)生,中位數(shù)應(yīng)取第20和第21個(gè)數(shù)據(jù)的平均數(shù),

50~60,60~70,70~80,三組中共有個(gè)數(shù),

80~90這一組中有14個(gè)數(shù)據(jù),

根據(jù)具體成績(jī)可知,第20個(gè)數(shù)據(jù)為825,第21個(gè)數(shù)據(jù)為83,

所以中位數(shù)為

故答案為:82.75

②∵初一和初二各有600名同學(xué)參加,

甲同學(xué)位居所在年級(jí)的275名,

甲同學(xué)的成績(jī)高于所在年級(jí)的中位數(shù),

初一年級(jí)的中位數(shù)為80,

初二年級(jí)的中位數(shù)為825,

甲同學(xué)的成績(jī)?yōu)?/span>,

甲同學(xué)所在年級(jí)為初一.

故答案為:初一.

③80~90這一組中有6個(gè)數(shù)據(jù)在85分及以上,

90~100這一組中有12個(gè)數(shù)據(jù),

可估計(jì)初二年級(jí)學(xué)生中達(dá)到優(yōu)秀的學(xué)生人數(shù)為(人).

故答案為:270

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出進(jìn)取所對(duì)應(yīng)的圓心角的度數(shù).

(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,直徑AC與弦BD的交點(diǎn)為EOBCD,BHAC,垂足為H,且∠BFA=∠DBC

1)求證:BFO的切線;

2)若BH3,求AD的長(zhǎng)度;

3)若sinDAC,求△OBH的面積與四邊形OBCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一帶一路倡議提出五年多來,交通、通信、能源等各項(xiàng)相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國(guó)民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017一年一路沿線部分國(guó)家的通信設(shè)施現(xiàn)狀統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是( ).

A.互聯(lián)網(wǎng)服務(wù)器擁有個(gè)數(shù)最多的國(guó)家是阿聯(lián)酋

B.寬帶用戶普及率的中位數(shù)是11.05%

C.8個(gè)國(guó)家的電話普及率能夠達(dá)到平均每人1

D.只有俄羅斯的三項(xiàng)指標(biāo)均超過了相應(yīng)的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦運(yùn)動(dòng)會(huì),在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時(shí)間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有( 。

最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有15米未跑;

跑的最快的選手用時(shí)4'46″;

出發(fā)后最快的選手與最慢的選手相遇了兩次;

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)長(zhǎng).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線向右平移個(gè)單位,再向上平移個(gè)單位,得到拋物線,直線的一個(gè)交點(diǎn)記為,與的一個(gè)交點(diǎn)記為,點(diǎn)的橫坐標(biāo)是,點(diǎn)在第一象限內(nèi).

1)求點(diǎn)的坐標(biāo)及的表達(dá)式;

2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線,垂足為,在的右側(cè)作正方形

①當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),直線恰好經(jīng)過正方形的頂點(diǎn),求此時(shí)的值;

②在點(diǎn)的運(yùn)動(dòng)過程中,若直線與正方形始終沒有公共點(diǎn),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春臨大地,學(xué)校決定給長(zhǎng)12米,寬9米的一塊長(zhǎng)方形展示區(qū)進(jìn)行種植改造現(xiàn)將其劃分成如圖兩個(gè)區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點(diǎn).

1)若區(qū)域Ⅰ的面積為Sm2,種植均價(jià)為180/m2,區(qū)域Ⅱ的草坪均價(jià)為40/m2,且兩區(qū)域的總價(jià)為16500元,求S的值.

2)若ABBC45,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2

①求ABBC的長(zhǎng);

②若甲、丙單價(jià)和為360/m2,乙、丙單價(jià)比為1312,三種花卉單價(jià)均為20的整數(shù)倍.當(dāng)矩形ABCD中花卉的種植總價(jià)為14520元時(shí),求種植乙花卉的總價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在Rt△ABCRt△DEF中,ACB=EDF=90°,A=30°,E=45°,AB=EF=6,如圖1,D是斜邊AB的中點(diǎn),將等腰Rt△DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α0°<α<90°),在旋轉(zhuǎn)過程中,直線DE,AC相交于點(diǎn)M,直線DF,BC相交于點(diǎn)N

1)如圖1,當(dāng)α=60°時(shí),求證:DM=BN;

2)在上述旋轉(zhuǎn)過程中,的值是一個(gè)定值嗎?請(qǐng)?jiān)趫D2中畫出圖形并加以證明;

3)如圖3,在上述旋轉(zhuǎn)過程中,當(dāng)點(diǎn)C落在斜邊EF上時(shí),求兩個(gè)三角形重合部分四邊形CMDN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案