如圖,小島A在港口P的南偏西450方向,距離港口81海里處,甲船從A出發(fā),沿AP方向以9海里/時的速度駛向港口,乙船從港口P出發(fā),沿南偏東600方向,以18海里/時的速度駛離港口,現(xiàn)兩船同時出發(fā),出發(fā)后幾小時乙船在甲船的正東方向?(結(jié)果精確到0.1小時)(參考數(shù)據(jù):≈1.41,≈1.73)

設(shè)出發(fā)后x小時乙船在甲船的正東方向,此時甲、乙兩船的位置分別在點C、D處,

連接CD,過點P作PE⊥CD,垂足為E,則點E在點P的正南方向,

在Rt△CEP中,∠CPE=45°∴PE=PC?cos45°。

在Rt△PED中,∠EPD=60°,

∴PE=PD?cos60°,

∴PC?cos45°=PD?cos60°,

∴(81-9x)?cos45°=18x?cos60°。

解這個方程,得x≈3.7,∴出發(fā)后約3.7小時乙船在甲船的正東方向。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小島A在港口P的南偏西45°方向,距離港口81海里處.甲船從A出發(fā),沿精英家教網(wǎng)AP方向以9海里/時的速度駛向港口,乙船從港口P出發(fā),沿南偏東60°方向,以18海里/時的速度駛離港口,現(xiàn)兩船同時出發(fā).
(1)出發(fā)后幾小時兩船與港口P的距離相等;
(2)出發(fā)后幾小時乙船在甲船的正東方向?(結(jié)果精確到0.1小時)(參考數(shù)據(jù):
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小島A在港口P的南偏西45°方向,距離港口70海里處.甲船從A出發(fā),沿AP方向以每小時20海里的速度駛向港口P;乙船從港口P出發(fā),沿著南偏東60°方向,以每小時15海里的速度駛離港口.若兩船同時出發(fā).
(1)甲船出發(fā)x小時,與港口P是距離是多少海里(用含x的式子表示)?
(2)幾小時后兩船與港口P的距離相等?
(3)當(dāng)乙船在甲船的正東方向時,船體發(fā)生了故障不能繼續(xù)航行,此時,乙船向甲船發(fā)出求救信號.問甲船以現(xiàn)有航速趕去救援,需幾小時才能到達(dá)出事地點(不考慮其它影響航速的因素)?(最后結(jié)果精確到0.1)(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小島A在港口P的南偏西45°方向,距離港口100海里處,甲船從A出發(fā),沿AP方向以10海里/時的速度駛向港口,乙船從港口P出發(fā),沿南偏東60°方向以20海里/時的速度駛離港口.現(xiàn)兩船同時出發(fā),出發(fā)后幾小時乙船在甲船的精英家教網(wǎng)正東方向?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小島A在港口P的南偏西45°方向,距離港口70海里處.甲船從A出發(fā),沿AP方向以每小時20海里的速度駛向港口P;乙船從港口P出發(fā),沿著南偏東60°方向,以每小時15海里的速度駛離港口.若兩船同時出發(fā).
(1)幾小時后兩船與港口P的距離相等?
(2)幾小時后乙船在甲船的正東方向?
(最后結(jié)果保留一位小數(shù),參考數(shù)據(jù):
2
≈1.4,
3
≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小島A在港口P的南偏西45°方向,距離港口81海里處.甲船從A出發(fā),沿AP方向以9海里/時的速度駛向港口,乙船從港口P出發(fā),沿南偏東60°方向,以18海里/時的速度駛離港口,現(xiàn)兩船同時出發(fā).

1.出發(fā)后幾小時兩船與港口P的距離相等?

2.出發(fā)后幾小時乙船在甲船的正東方向?(結(jié)果精確到0.1小時)

(參考數(shù)據(jù):≈1.41,≈1.73)

 

查看答案和解析>>

同步練習(xí)冊答案