【題目】如圖,已知EFAD,∠1=∠2,∠BAC70°,求∠AGD(請?zhí)羁眨?/span>

解:∵EFAD

∴∠2      

又∵∠1=∠2

∴∠1=∠3   

AB      

∴∠BAC+   180°(   

∵∠BAC70°(   

∴∠AGD      

【答案】3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯角相等,兩直線平行,∠DGA,兩直線平行,同旁內(nèi)角互補,已知,110°,等式的性質(zhì).

【解析】

根據(jù)平行線的性質(zhì)和已知求出∠1=3,根據(jù)平行線的判定定理推出ABDG;接下來,再根據(jù)平行線的性質(zhì)得出∠BAC+DGA=180°,進而不難求得∠AGD的度數(shù).

解:∵EFAD,

∴∠2=∠3(兩直線平行,同位角相等),

∵∠1=∠2,

∴∠1=∠3(等量代換),

ABDG(內(nèi)錯角相等,兩直線平行),

∴∠BAC+DGA180°(兩直線平行,同旁內(nèi)角互補),

∵∠BAC70°(已知),

∴∠AGD110°(等式的性質(zhì)).

故答案為:∠3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯角相等,兩直線平行,∠DGA,兩直線平行,同旁內(nèi)角互補,已知,110°,等式的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有紅、黃、白三種顏色球共100個,它們除顏色外都相同,其中黃球個數(shù)是白球個數(shù)的2倍少5.已知從袋中摸出一個球是紅球的概率是.

1)求袋中紅球的個數(shù);

2)求從袋中摸出一個球是白球的概率;

3)取走10個球(其中沒有紅球)后,求從剩余的球中摸出一個球是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點0AC邊上一動點,過點0DE,使DEBC,DE交∠ACB的角平分線于點D,交∠ACB的外角平分線于點E.

(1)求證:OD=OE

(2)當(dāng)點0運動到何處時,四邊形CDAE是矩形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形角平分線交點或三角形內(nèi)切圓的圓心都稱為三角形的內(nèi)心.按此說法,四邊形的四個角平分線交于一點,我們也稱為“四邊形的內(nèi)心”

(1)試舉出一個有內(nèi)心的四邊形

(2)探究對于任意四邊形ABCD,如果有內(nèi)心,則四邊形的邊長具備何種條件?為什么?

(3)探究腰長為的等腰直角三角形ABC,∠C=90°,OABC的內(nèi)心,若沿圖中虛線剪開O仍然是四邊形ABDE的內(nèi)心,此時裁剪線有多少條?

(4)問題(3)中,O是四邊形ABDE內(nèi)心且四邊形ABDE是等腰梯形,DE的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOB是直角三角形,AOB=90°,邊AB與y軸交于點C.

(1)A=AOC,試說明:B=BOC;

(2)延長AB交x軸于點E,過O作ODAB,若DOB=EOB,A=E,求A的度數(shù);

(3)如圖,OF平分AOM,BCO的平分線交FO的延長線于點P,A=40°,當(dāng)ABO繞O點旋轉(zhuǎn)時(邊AB與y軸正半軸始終相交于點C),問P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當(dāng)季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時裝每件進價Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、BC是數(shù)軸上的三點,點C表示的數(shù)是6,點B與點C之間的距離是4,點B與點A的距離是12,點P為數(shù)軸上一動點.

1)數(shù)軸上點A表示的數(shù)為   .點B表示的數(shù)為   

2)數(shù)軸上是否存在一點P,使點P到點A、點B的距離和為16,若存在,請求出此時點P所表示的數(shù);若不存在,請說明理由;

3)點P以每秒1個單位長度的速度從C點向左運動,點Q以每秒2個單位長度從點B出發(fā)向左運動,點R從點A以每秒5個單位長度的速度向右運動,它們同時出發(fā),運動的時間為t秒,請求點P與點Q,點R的距離相等時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy有一個等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2A2O=2A1O……依此規(guī)律,得到等腰直角三角形A2 017OB2 017則點B2 017的坐標(biāo)( 。

A. (22 017,-22 017 B. (22 016,-22 016 C. (22 017,22 017 D. (22 016,22 016

查看答案和解析>>

同步練習(xí)冊答案