【題目】已知:如圖,在四邊形ABCD中,ADBC,MCD中點(diǎn),AM平分∠DAB,ADBCAB.求證:BM平分∠ABC

小淇證明過(guò)程如下:

延長(zhǎng)BC至點(diǎn)F,使得CFAD,連接MF

ADBC, D=∠MCF

MCD中點(diǎn),∴ DMCM

在△ADM和△FCM中,

ADM≌△FCMSAS). AMFM

BFBCCFBCADAB,∴ ABF是等腰三角形.

BM平分∠ABC(等腰三角形底邊上的中線與頂角的角平分重合).

1)請(qǐng)你簡(jiǎn)要敘述小淇證明方法的錯(cuò)誤之處;

2)若AB5,AM3,求四邊形ABCD面積.

【答案】1)見(jiàn)解析;(212.

【解析】

1)根據(jù)題中的證明過(guò)程可知錯(cuò)誤之處在于沒(méi)有證明AM,F三點(diǎn)共線;

2)延長(zhǎng)AM、BC交于點(diǎn)F,先證明△ADM≌△FCM,再證明△ABF是等腰三角形,利用三線合一的性質(zhì)可得BMAF,然后求出BMAF可得△ABF的面積,再證明四邊形ABCD面積等于△ABF的面積即可.

解:(1)小淇證明方法的錯(cuò)誤之處在于沒(méi)有證明A,M,F三點(diǎn)共線,故無(wú)法運(yùn)用等腰三角形三線合一的性質(zhì)證明BM平分∠ABC;

2)如圖,延長(zhǎng)AMBC交于點(diǎn)F

ADBC,

∴∠D=∠MCF

在△ADM和△FCM中,,

∴△ADM≌△FCMASA),

ADCF,AMMF,SADM=SFCM,

ADBCAB,

BCCFBCADBFAB,

ABBFAMMF,

BMAF,

AB5AM3,

BM=4,AF=6,

SABF=,

∴四邊形ABCD面積=S四邊形ABCM + SADM= S四邊形ABCM+ SFCM= SABF=12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】濠河成功晉升國(guó)家級(jí)旅游景區(qū),為了保護(hù)這條美麗的護(hù)城河,南通市政府投入大量資金治理濠河污染,在城郊建立了一個(gè)大型污水處理廠,設(shè)庫(kù)池中有待處理的污水噸,又從城區(qū)流入庫(kù)池的污水按每小時(shí)噸的固定流量增加,如果同時(shí)開(kāi)動(dòng)臺(tái)機(jī)組需小時(shí)剛好處理完污水,同時(shí)開(kāi)動(dòng)臺(tái)機(jī)組需小時(shí)剛好處理完污水,若需要小時(shí)內(nèi)將污水處理完畢,那么至少要同時(shí)開(kāi)動(dòng)多少臺(tái)機(jī)組?(每臺(tái)機(jī)組每小時(shí)處理污水量不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=2,B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作ADE=40°,DE交線段AC于E.

(1)當(dāng)BDA=115°時(shí),BAD= °;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),BDA逐漸變 (填“大”或“小”);

(2)當(dāng)DC等于多少時(shí),ABD≌△DCE,請(qǐng)說(shuō)明理由;

(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,ADE的形狀也在改變,判斷當(dāng)BDA等于多少度時(shí),ADE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)為常數(shù)

求該二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo);

求該二次函數(shù)圖象的頂點(diǎn)P的坐標(biāo);

如將該函數(shù)的圖象向左平移3個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市投入31500元購(gòu)進(jìn)A、B兩種飲料共800箱,飲料的成本與銷售價(jià)如下表:(單位:元/箱)

類別

成本價(jià)

銷售價(jià)

A

42

64

B

36

52

1)該超市購(gòu)進(jìn)A、B兩種飲料各多少箱?

2)全部售完800箱飲料共盈利多少元?

3)若超市計(jì)劃盈利16200元,且A類飲料售價(jià)不變,則B類飲料銷售價(jià)至少應(yīng)定為每箱多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.

組別

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計(jì)

1

請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:

(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補(bǔ)全;

(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?

(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書(shū)心得報(bào)告,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位,體現(xiàn)了數(shù)學(xué)研究中的繼承和發(fā)展.現(xiàn)用4個(gè)全等的直角三角形拼成如圖所示“弦圖”.RtABC中,∠ACB=90°,若,請(qǐng)你利用這個(gè)圖形解決下列問(wèn)題:

(1)試說(shuō)明;

(2)如果大正方形的面積是10,小正方形的面積是2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列命題中正確的是( 。

A. a bc

B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限

C. mam+b+bam是任意實(shí)數(shù))

D. 3b+2c0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB5,AC8,BD,CD分別平分∠ABC,∠ACB,過(guò)點(diǎn)D作直線平行于BC,交AB,ACEF,則AEF的周長(zhǎng)為(  )

A.11B.13C.15D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案