閱讀下面材料并填空.

你能比較20122013與20132012的大小嗎?為了解決這個問題,先把問題一般化,即比較nn+1與(n+1)n的大小(n為正整數(shù)).然后分析n=1,n=2,n=3,n=4,…,從這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.

(1)通過計算,比較下列各組數(shù)的大小(在橫線上填“>”“<”或“=”):

①12________21;②23________32;③34________43;④45________54;

(2)從(1)的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關(guān)系是________;

(3)根據(jù)上面歸納猜想得到的一般結(jié)論,可以得到20122013與20132012的大小關(guān)系是________.

答案:
解析:

  解:(1)①<②<③>④>

  (2)nn+1<(n+1)n(n=1,2)nn+1>(n+1)n(n=3,4,5,…)

  (3)20122013>20132012


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料并填空:
已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|.當A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,|AB|=|OB|=|b|=|a-b|,當A、B兩點都不在原點時,

(1)如圖2,點A、B都在原點的右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
(2)如圖3,點A、B在原點的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
(3)如圖4,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=a-b=|a-b|.
綜上,數(shù)軸上A、B兩點的距離|AB|=|a-b|.
利用上述結(jié)論,小明同學(xué)這樣解決了以下問題:
數(shù)軸上表示x和-1的兩點之間的距離是|x+1|,表示x和2的兩點之間的距離是|x-2|,當x的取值范圍為-1≤x≤2時,代數(shù)式|x+1|+|x-2|取最小值3.并且他發(fā)現(xiàn):對于代數(shù)式|x-a1|+|x-a2|+…+|x-an|,當n為奇數(shù)時,把a1,a2,…an從小到大排列,x等于最中間的數(shù)值時,原式值最;當n為偶數(shù)時,把a1,a2,…an從小到大排列,x取最中間兩個數(shù)值之間的數(shù)(包括最中間的兩個數(shù))時,原式值最。
請你仿照小明的方法解決下面問題(也可以考慮其他方法):
若y=|1-x|+|2-3x|+|3-4x|+|4-5x|+|5-6x|+|6-7x|,則當x的取值范圍是
3
4
≤x≤
6
7
3
4
≤x≤
6
7
時,y取最小值
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用所學(xué)的數(shù)學(xué)知識計算
(1)有8箱蘋果,以每箱5㎏為標準,稱重記錄如下:(超過標準的為正數(shù))1.5,-1,3,0,0.5,-1.5,2,-0.5. 8箱蘋果的總質(zhì)量水是多少?
(2)閱讀下面材料并完成填空
你能比較兩個數(shù)20012002與20022001的大小嗎?
為了解決這個問題,先把問題一般化,即比較nn+1和(n+1)n的大小,然后,從分析n=1,n=2,n=3,n=4,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
I、通過計算,比較下列①~③各組中兩個數(shù)的大。ㄔ跈M線上填上>,=,<)
①12
21
②23
32
③34
43
④45>54
⑤56>65
⑥67>76
II、從①小題的結(jié)果經(jīng)過歸納,可以猜出nn+1與(n+1)n的大小關(guān)系是
當1≤n≤2時,nn+1<(n+1)n,當n>2時,nn+1>(n+1)n
當1≤n≤2時,nn+1<(n+1)n,當n>2時,nn+1>(n+1)n

III、根據(jù)上面歸納猜想得到的一般結(jié)論,可以得到20012002
20022001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

用所學(xué)的數(shù)學(xué)知識計算
(1)有8箱蘋果,以每箱5㎏為標準,稱重記錄如下:(超過標準的為正數(shù))1.5,-1,3,0,0.5,-1.5,2,-0.5. 8箱蘋果的總質(zhì)量水是多少?
(2)閱讀下面材料并完成填空
你能比較兩個數(shù)20012002與20022001的大小嗎?
為了解決這個問題,先把問題一般化,即比較nn+1和(n+1)n的大小,然后,從分析n=1,n=2,n=3,n=4,…,這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
I、通過計算,比較下列①~③各組中兩個數(shù)的大。ㄔ跈M線上填上>,=,<)
①12______21
②23______32
③34______43
④45>54
⑤56>65
⑥67>76
II、從①小題的結(jié)果經(jīng)過歸納,可以猜出nn+1與(n+1)n的大小關(guān)系是______.
III、根據(jù)上面歸納猜想得到的一般結(jié)論,可以得到20012002______20022001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面材料并填空:
已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|.當A、B兩點中有一點在原點時,不妨設(shè)點A在原點,如圖1,|AB|=|OB|=|b|=|a-b|,當A、B兩點都不在原點時,

(1)如圖2,點A、B都在原點的右邊,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
(2)如圖3,點A、B在原點的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
(3)如圖4,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=a-b=|a-b|.
綜上,數(shù)軸上A、B兩點的距離|AB|=|a-b|.
利用上述結(jié)論,小明同學(xué)這樣解決了以下問題:
數(shù)軸上表示x和-1的兩點之間的距離是|x+1|,表示x和2的兩點之間的距離是|x-2|,當x的取值范圍為-1≤x≤2時,代數(shù)式|x+1|+|x-2|取最小值3.并且他發(fā)現(xiàn):對于代數(shù)式|x-a1|+|x-a2|+…+|x-an|,當n為奇數(shù)時,把a1,a2,…an從小到大排列,x等于最中間的數(shù)值時,原式值最。划攏為偶數(shù)時,把a1,a2,…an從小到大排列,x取最中間兩個數(shù)值之間的數(shù)(包括最中間的兩個數(shù))時,原式值最。
請你仿照小明的方法解決下面問題(也可以考慮其他方法):
若y=|1-x|+|2-3x|+|3-4x|+|4-5x|+|5-6x|+|6-7x|,則當x的取值范圍是______時,y取最小值______.

查看答案和解析>>

同步練習冊答案