【題目】如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
【答案】
(1)
證明:在△ABC和△DFE中 ,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE
(2)
解:∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB= =4,
∴CB=4+5=9.
【解析】(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.此題主要考查了全等三角形的判定和性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處(如圖1).
(1)如圖2,設(shè)折痕與邊BC交于點O,連接,OP、OA.已知△OCP與△PDA的面積比為1:4,求邊AB的長;
(2)動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN、CA,交于點F,過點M作ME⊥BP于點E.
①在圖1中畫出圖形;
②在△OCP與△PDA的面積比為1:4不變的情況下,試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點C的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)看作相應組中值的權(quán),請你依據(jù)以上知識,解決下面的實際問題.
為了解5路公共汽車的運營情況,公交部門統(tǒng)計了某天5路公共汽車每個運行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計圖:
(1)求A組對應扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;
(2)求這天5路公共汽車平均每班的載客量;
(3)如果一個月按30天計算,請估計5路公共汽車一個月的總載客量,并把結(jié)果用科學記數(shù)法表示出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①若a<1,則(a﹣1) =﹣ ;②平行四邊形既是中心對稱圖形又是軸對稱圖形;③ 的算術(shù)平方根是3;④如果方程ax2+2x+1=0有兩個不相等的實數(shù)根,則實數(shù)a<1.其中正確的命題個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線l1經(jīng)過(2,3)和(﹣1,﹣3),直線l2經(jīng)過原點O,且與直線l1交于點P(﹣2,a).
(1)求a的值;
(2)(﹣2,a)可看成怎樣的二元一次方程組的解?
(3)設(shè)直線l1與y軸交于點A,你能求出△APO的面積嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com